72. Edit Distance

From Wiki:

In computer science, edit distance is a way of quantifying how dissimilar two strings (e.g., words) are to one another by counting the minimum number of operations required to transform one string into the other.

There are three operations permitted on a word: replace, delete, insert. For example, the edit distance between "a" and "b" is 1, the edit distance between "abc" and "def" is 3. This post analyzes how to calculate edit distance by using dynamic programming.

Key Analysis

Let dp[i][j] stands for the edit distance between two strings with length i and j, i.e., word1[0,...,i-1] and word2[0,...,j-1].
There is a relation between dp[i][j] and dp[i-1][j-1]. Let's say we transform from one string to another. The first string has length i and it's last character is "x"; the second string has length j and its last character is "y". The following diagram shows the relation.

edit-distance-dynamic-programming

  1. if x == y, then dp[i][j] == dp[i-1][j-1]
  2. if x != y, and we insert y for word1, then dp[i][j] = dp[i][j-1] + 1
  3. if x != y, and we delete x for word1, then dp[i][j] = dp[i-1][j] + 1
  4. if x != y, and we replace x with y for word1, then dp[i][j] = dp[i-1][j-1] + 1
  5. When x!=y, dp[i][j] is the min of the three situations.

Initial condition:
dp[i][0] = i, dp[0][j] = j

代码如下:
<pre name="code" class="cpp">class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = (int)word1.size(), n = (int)word2.size();
        int dp[m+1][n+1]; //发现int数组要比vector要快
        for (int i=0; i<n+1; i++) {
            dp[0][i] = i;
        }
        for (int i=1; i<m+1; i++) {
            dp[i][0] = i;
        }
        for (int i=1; i<=m; i++) {
            for (int j=1; j<=n; j++) {
                if (word1[i-1] == word2[j-1]) {
                    dp[i][j] = dp[i-1][j-1];
                } else {
                    dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1;
                }
            }
        }
        return dp[m][n];
    }
};


 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值