递归=‘递’ + ‘归’ ;有去有回!
递归的基本思想是把规模大的问题转化为规模小的相似的子问题来解决。在函数实现时,因为解决大问题的方法和解决小问题的方法往往是同一个方法,所以就产生了函数调用它自身的情况。另外这个解决问题的函数必须有明显的结束条件,这样就不会产生无限递归的情况了。
参考链接:
其参考代码:
#include <stdio.h>
int recursion(int);
int S = 0;
int main(void)
{
recursion(10);
printf("输出最终结果:S=%d\n",S);
return 0;
}
int recursion(int i)
{
printf("i:%d S为%d\n", i, S);
if (i > 0)
{
return S += recursion(i - 1);
printf("返回到%d", S);
}
else
{
return 1;
printf("是否执行此句");
}
}
运行结果;
很好的一个比喻:
目前我找到的对递归最恰当的比喻,就是查词典。
我们使用的词典,本身就是递归,为了解释一个词,需要使用更多的词。
当你查一个词,发现这个词的解释中某个词仍然不懂,于是你开始查这第二个词,可惜,第二个词里仍然有不懂的词,于是查第三个词,这样查下去,直到有一个词的解释是你完全能看懂的,那么递归走到了尽头,然后你开始后退,逐个明白之前查过的每一个词,最终,你明白了最开始那个词的意思。。。
1、明确递归终止条件;
2、给出递归终止时的处理办法;
3、提取重复的逻辑,缩小问题规模。
1、阶乘:
#include <stdio.h>
int Factorial(int n) {
if (n > 1) {
return n * Factorial(n - 1);
}
else
{
return 1;
}
}
int main() {
int a,Sum;
printf("求解数字n的阶乘!\n");
scanf("%d", &a);
Sum=Factorial(a);
printf("数字%d的阶乘为 %d\n",a,Sum);
return 0;
}
运行结果:
2、斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……;在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)。
示例代码:
#include <stdio.h>
int fibonacci(int n) {
if (n == 1 || n == 2)
{
return 1;
}
else
{
fibonacci(n) + fibonacci(n - 1);
}
}
int main() {
int a, b;
printf("求斐波纳契数列!\n");
scanf("%d", &a);
for (int i = 0; i <= a; i++)
{
b = fibonacci(a);
printf("%d ", b);
if ((i % 5) == 0)
{
printf("\n");
}
}
return 0;
}