异常点检测

目录

参考链接:

常用包

正太检测

异常值检测算法

Grubbs检验 

ESD检验(Extreme Studentized Deviate test)

S-ESD(Seasonal ESD)

S-H-ESD (Seasonal Hybrid ESD)

普通时序数据异常值检测

一维曲线平滑

​ 一阶指数平滑:

 二阶指数平滑:

 三阶指数平滑(Holt-Winters):

开尔曼滤波 

总结:


参考链接:

时间序列异常检测算法S-H-ESD - Treant - 博客园 (cnblogs.com)

机器学习数据分析之异常值检测_`AllureLove的博客-CSDN博客

python一维时间序列平滑:移动平均、指数平滑、开尔曼滤波等_`AllureLove的博客-CSDN博客_python 时间序列平滑

时间序列分解算法:STL - Treant - 博客园 (cnblogs.com)

常用包

Tsmoothie 

adtk

pyculiarity 

        Twitter开源,直接Pip安装检索不到,我是直接下载安装包来安装的

         Twitter异常检测框架BreakoutDetection Python版_notHeadache的博客-CSDN博客_twitter异常检测算法

         https://github.com/zrnsm/pyculiarity/

         https://github.com/ericist/rstl

        包含 pyculiarity、rstl以及一个简单demo:

         pyculiarity+时序数据异常检测-数据挖掘文档类资源-CSDN文库   

正太检测

# 图像化正太检验
# QQ-正太检验
# PP图的思想是对比正态分布的累计概率值和实际分布的累计概率值
# QQ图比对正态分布的分位数和实际分布的分位数
# 分析散点是否均匀地分布在倾斜线附近,如果偏离倾斜线则不是正太分布
# ===================================================================================
# ===================================================================================
# ===================================================================================
# 定量正太检验
# Shapiro检验法和K-S检验法均属于非参数的统计方法,
# ***原假设:变量服从正态分布***
# 样本量低于5000时,Shapiro检验法比较合理,否则应使用k-S检验法
# 统计量值,概率值P ***概率值P<0.05 则拒绝原假设,即不满足正太分布

pp_qq_plot=sm.ProbPlot(fhData)
pp_qq_plot.qqplot(line='q')
plt.title('Q-Q')

plt.rcParams['figure.figsize'] = (20.0, 12.0) # 单位是inches

# 测试线性数据
testLineData = np.array([i for i in range(100000)])
pp_qq_plot=sm.ProbPlot(testLineData)
pp_qq_plot.qqplot(line='q')
plt.title('Q-Q')

KstestLineDataTest=stats.kstest(rvs=testLineData, args=(testLineData.mean(),testLineData.std()), cdf='norm')
ShapiroLineDataTest=stats.shapiro(x=testLineData)
print("LineData正太检验量化值(k-s):", KstestLineDataTest)
print("LineData正太检验量化值(shapiro):", ShapiroLineDataTest)

# 测试正太分布数据
testNormalData = np.random.normal(0.5, 1, 100000)
pp_qq_plot=sm.ProbPlot(testNormalData)
pp_qq_plot.qqplot(line='q')
plt.title('Q-Q')

KstestNormalDataTest=stats.kstest(rvs=testNormalData, args=(testNormalData.mean(),testNormalData.std()), cdf='norm')
ShapiroNormalDataTest=stats.shapiro(x=testNormalData)
print("NormalData正太检验量化值(k-s):", KstestNormalDataTest)
print("NormalData正太检验量化值(shapiro):", ShapiroNormalDataTest)

# 正太分布添加噪声测试
Outliers=np.array([1000, 10000, 100000])
testNormalDataOutliers = np.append(testNormalData, Outliers)
KstestNormalDataTestOutliers=stats.kstest(rvs=testNormalDataOutliers, args=(testNormalDataOutliers.mean(),testNormalDataOutliers.std()), cdf='norm')
ShapiroNormalDataTestOutliers=stats.shapiro(x=testNormalDataOutliers)
print("NormalData+Outliers正太检验量化值(k-s):", KstestNormalDataTestOutliers)
print("NormalData+Outliers正太检验量化值(shapiro):", ShapiroNormalDataTestOutliers)
print(threeSigmaCheck(pd.Series(testNormalDataOutliers))) # 3倍标准差检验离群值

 

 

NormalData正太检验量化值(k-s): KstestResult(statistic=0.002135691438279741, pvalue=0.7517562982596927)
NormalData正太检验量化值(shapiro): (0.999978244304657, 0.8738780617713928)

NormalData+Outliers正太检验量化值(k-s): KstestResult(statistic=0.4967646694998119, pvalue=0.0) NormalData+Outliers正太检验量化值(shapiro): (0.00036269426345825195, 0.0)

         从上面数据的正太检验看出,十万正太分布的数据在插入3个异常值后就不满足正太分布的假设了。因此,包含异常值的数据最好还是不要使用基于正太分布的模型。

异常值检测算法

Grubbs检验 

Grubbs' Test为一种假设检验的方法,常被用来检验服从正太分布的单变量数据集中的单个异常值。若有异常值,则其必为数据集中的最大值或最小值。原假设与备择假设如下:

        H0H0: 数据集中没有异常值
        H1H1: 数据集中有一个异常值

Grubbs' Test检验假设的所用到的检验统计量(test statistic)为:

G=\frac{\max \left|Y_{i}-\bar{Y}\right|}{s}

其中,Y¯为均值,s为标准差。

当检验统计量满足以下条件:

G>\frac{(N-1)}{\sqrt{N}} \sqrt{\frac{\left(t_{\alpha /(2 N), N-2}\right)^{2}}{N-2+\left(t_{\alpha /(2 N), N-2}\right)^{2}}}

原假设H0被拒绝,其中,N为数据集的样本数,tα/(2N),N−2为显著度(significance level)等于α/(2N)、自由度(degrees of freedom)等于N−2的t分布临界值。实际上,Grubbs' Test可理解为检验最大值、最小值偏离均值的程度是否为异常。

# pip3 install outlier_utils==0.0.3
from outlier import smirnov_grubbs as grubbs
# 默认双边检测,alpha是显著性,输出的结果会删除不满足要求的数据
data = pd.Series([1, 8, 9, 10, 9])
grubbs.test(data, alpha=0.05)
# 1     8
# 2     9
# 3    10
# 4     9
# dtype: int64

data = np.array([1, 8, 9, 10, 9])
grubbs.test(data, alpha=0.05) # array([8, 9, 10, 9])
# 返回离群指数的单侧(最小)检验
grubbs.min_test_indices([8, 9, 10, 1, 9], alpha=0.05) #[3]
#返回异常值的单侧(max)测试
grubbs.max_test_outliers([8, 9, 10, 1, 9], alpha=0.05) #[]
grubbs.max_test_outliers([8, 9, 10, 50, 9], alpha=0.05) #[50]

ESD检验(Extreme Studentized Deviate test)

        在现实数据集中,异常值往往是多个而非单个。为了将Grubbs' Test扩展到k个异常值检测,则需要在数据集中逐步删除与均值偏离最大的值(为最大值或最小值),同步更新对应的t分布临界值,检验原假设是否成立。基于此,Rosner提出了Grubbs' Test的泛化版ESD。算法流程如下:

  • 计算与均值偏离最远的残差,注意计算均值时的数据序列应是删除上一轮最大残差样本数据后;

R_{j}=\frac{\max _{i}\left|Y_{i}-\overline{Y^{\prime}}\right|}{s}, \quad 1 \leq j \leq k

  • 计算临界值(critical value)

\lambda_{j}=\frac{(n-j) * t_{p, n-j-1}}{\sqrt{\left(n-j-1+t_{p, n-j-1}^{2}\right)(n-j+1)}}, \quad 1 \leq j \leq k

  • 检验原假设,比较检验统计量与临界值;若Ri>λj,则原假设H0不成立,该样本点为异常点;

  • 重复以上步骤k次至算法结束。

import math
import numpy as np
from scipy import stats

def get_r(arr):
    m_arr = np.mean(arr)
    d_arr = abs(arr - m_arr)
    s = np.std(arr, ddof=1)  # 样本标准差,注意分母n-1
    out_ind = np.argmax(d_arr)
    return np.max(d_arr) / s, out_ind

def esd(data, alpha=0.05, max_anoms=0.10):
    n = len(data)
    if isinstance(max_anoms, float):
        r = math.ceil(max_anoms * n)
    else:
        r = max_anoms
    outliers = []
    for i in range(1, r + 1):
        p = 1 - alpha / (n - i + 1) / 2
        t = stats.t.ppf(p, n - i - 1)  # p分位点
        _lambda = (n - i) * t / math.sqrt((n - i - 1 + t ** 2) * (n - i + 1))
        arr = np.delete(data, outliers)
        _r, out_ind = get_r(arr)
        if _r > _lambda:  # 超出临界值,视为异常点
            outliers.append(out_ind)
        else:
            break
    return np.delete(data, outliers), data[outliers]

S-ESD(Seasonal ESD)

        时间序列数据具有周期性(seasonal)、趋势性(trend),时间序列数据之间是存在时序关联的,因此时间序列数据异常检测时不能作为孤立的样本点处理。

        将时间序列数据分解为趋势分量、周期分量和余项分量(残差分量):

Y_{v}=T_{v}+S_{v}+R_{v} \quad v=1, \cdots, N

        余项分量(残差分量)在时间序列数据消除趋势分量、周期分量后的结果,个人理解可以看作是近似孤立的样本点。想当然的,将ESD运用于STL分解后的余项分量中,即可得到时间序列上的异常点。但含异常点的数据直接使用基于正太分布的ESD会造成很多误检,因为异常值会改变真实分布的方差和均值,后面会解释。

        时间序列数据分解为趋势分量、周期分量和余项分量(残差分量)可以使用STL(Seasonal-Trend decomposition procedure based on Loess)  

        R提供STL函数,底层为作者Cleveland的Fortran实现,封装为python的包为rstl

 Python的statsmodels实现了一个简单版的时序分解,通过加权滑动平均提取趋势分量,然后对cycle-subseries每个时间点数据求平均组成周期分量:

 S-ESD算法用中位数(median)替换掉趋势分量;余项计算公式如下:

R_{X}=X-S_{X}-\tilde{X}

其中,X为原时间序列数据,SX为STL分解后的周期分量,X~为X的中位数。 

data.value - decomp.seasonal - data.value.median()

S-H-ESD (Seasonal Hybrid ESD)

        在得到余项后,由于个别异常值会极大地拉伸均值和方差,为了解决这个问题,S-H-ESD采用了更具鲁棒性的中位数与绝对中位差(Median Absolute Deviation, MAD)替换ESD中的均值与标准差。MAD的计算公式如下: 

M A D=\operatorname{median}\left(\left|X_{i}-\operatorname{median}(X)\right|\right)

可以使用from statsmodels.robust.scale import mad ,注意区别pandas的mad函数【平均绝对偏差】

实现:

def detect_anoms(data, max_outliers=10, alpha=0.05, one_tail=False, upper_tail=False):
    """
    H-ESD算法
    max_outliers H-ESD算法检测的异常值最大数量
    alpha 接受或拒绝异常的统计显著性水平
    one_tail = False # 只有最大或最小值检测异常值, False时为最大、最小值都检测异常值
    upper_tail = False # 最大值是异常值,配合one_tail使用
    """
    # Maximum number of outliers that S-H-ESD can detect (e.g. 49% of data)
    n = len(data)
    data = fhDataDiffClear
    R_idx = list(range(max_outliers))
    for i in range(1, max_outliers + 1):
        if one_tail:
            if upper_tail:
                ares = data - data.median()
            else:
                ares = data.median() - data
        else:
            ares = (data - data.median()).abs()

        # protect against constant time series
        data_sigma = mad(data)
        if data_sigma == 0:
            break

        ares = ares / float(data_sigma)
        R = ares.max()
        temp_max_idx = ares[ares == R].index.tolist()[0]
        R_idx[i - 1] = temp_max_idx
        data = data[data.index != R_idx[i - 1]]
        if one_tail:
            p = 1 - alpha / float(n - i + 1)
        else:
            p = 1 - alpha / float(2 * (n - i + 1))

        t = student_t.ppf(p, (n - i - 1))
        lam = t * (n - i) / float(sqrt((n - i - 1 + t**2) * (n - i + 1)))

        if R > lam:
            num_anoms = i

    if num_anoms > 0:
        R_idx = R_idx[:num_anoms]
    else:
        R_idx = None
    return R_idx

# 测试
R_idx = detect_anoms(fhDataDiffClear)
print(R_idx)

普通时序数据异常值检测

        普通时序信号有时周期性并不平稳,例如变电站的负荷数据,有时会并入其他线路的负荷,导致数据更为复杂,因此直接使用提取周期和趋势,进而获取余项分量(残差分量)的S-H-ESD算法会导致异常检测性能下降(误检和漏检)。而周期和趋势近似于时序数据的平滑,而平滑并不会因为周期性被破坏导致性能下降,因此算法流程为:

        1)数据平滑

        2)使用H-SED算法检测异常值

数据平滑算法有:

一维曲线平滑

window = 7
# 简单移动平均
simp_moving_avg = fhData.rolling(window=window, min_periods=1).mean()
# 加权移动平均
weighted_moving_avg = fhData.rolling(window=window, min_periods=1, win_type="cosine").mean()
# 指数加权移动平均
ewma = fhData.ewm(alpha=alpha, min_periods=1).mean()

 一阶指数平滑

def exponential_smoothing(alpha, s):
    '''
    一次指数平滑
    :param alpha:  平滑系数
    :param s:      数据序列, list
    :return:       返回一次指数平滑模型参数, list
    '''
    s_temp = []
    s_temp.append(s[0])
    print(s_temp)
    for i in range(1, len(s), 1):
        s_temp.append(alpha * s[i-1] + (1 - alpha) * s_temp[i-1])
    return s_temp

 二阶指数平滑

def double_exponential_smoothing(series, alpha, beta):
    """
        series - dataset with timeseries
        alpha - float [0.0, 1.0], smoothing parameter for level
        beta - float [0.0, 1.0], smoothing parameter for trend
    """
    # first value is same as series
    result = [series[0]]
    for n in range(1, len(series)+1):
        if n == 1:
            level, trend = series[0], series[1] - series[0]
        if n >= len(series): # forecasting
            value = result[-1]
        else:
            value = series[n]
        last_level, level = level, alpha*value + (1-alpha)*(level+trend)
        trend = beta*(level-last_level) + (1-beta)*trend
        result.append(level+trend)

 三阶指数平滑(Holt-Winters):

def exponential_smoothing_3(alpha, s):
     '''
    三次指数平滑
    :param alpha:  平滑系数
    :param s:      数据序列, list
    :return:       返回三次指数平滑模型参数a, b, c, list
    '''
    s_single = exponential_smoothing_1(alpha, s)
    s_double = exponential_smoothing_1(alpha, s_single)
    s_triple = exponential_smoothing_1(alpha, s_double)
    
    a_triple = [0 for i in range(len(s))]
    b_triple = [0 for i in range(len(s))]
    c_triple = [0 for i in range(len(s))] 
    for i in range(len(s)):
        a_triple[i] = 3 * s_single[i] - 3 * s_double[i] + s_triple[i]
        b_triple[i] = (alpha / (2 * ((1 - alpha) ** 2))) * ((6 - 5 * alpha) * s_single[i] - 2 * ((5 - 4 * alpha) * s_double[i]) + (4 - 3 * alpha) * s_triple[i])
        c_triple[i] = ((alpha ** 2) / (2 * ((1 - alpha) ** 2))) * (s_single[i] - 2 * s_double[i] + s_triple[i])
    return a_triple, b_triple, c_triple
  

def predict_value_with_exp_smoothing_3(alpha,s):
      a,b,c=exponential_smoothing_3(alpha,s)
      s_temp=[]
      s_temp.append(a[0])
      for i in range(len(a)):
         s_temp.append(a[i]+b[i]+c[i])
     return s_temp
dataset=predict_value_with_exp_smoothing_3(alpha=0.2,s=dataset) 

开尔曼滤波 

def Kalman1D(x, damping=1):
    """
    卡尔曼滤波,缺点:耗时较长
    :param x 时间序列
    :damping 协方差,控制参数
    :return x_hat 平滑后的时间序列
    """
    # To return the smoothed time series data
    observation_covariance = damping
    initial_value_guess = x[0]
    transition_matrix = 1
    transition_covariance = 0.1
    kf = KalmanFilter(
        initial_state_mean=initial_value_guess,
        initial_state_covariance=observation_covariance,
        observation_covariance=observation_covariance,
        transition_covariance=transition_covariance,
        transition_matrices=transition_matrix
    )
    x_hat, state_cov = kf.smooth(x)
    return x_hat

总结:

        1)异常值检测不要使用基于正太分布的模型,要使用基于中位数(代替均值)绝对中位差(代替方差)。之前自己无脑上三倍标准差过滤异常值!

        1)如果时序数据具有平稳性,即周期性稳定,可以使用S-H-ESD,否则可以采用通用时序数据的异常处理方法,实际上原时序数据减去其平滑后的数据可以看作是时序数据的余项分量(残差分量),因此效果也不错。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值