输入一个n个节点的无根树的各条边,并指定一个根节点,要求把该树转化为有根树,输出各个节点的父亲编号。
代码:
#include <iostream>
#include <vector>
using namespace std;
const int MAXN = 1000;
int n, p[MAXN];
vector<int> G[MAXN];
void dfs(int u, int fa) { //递归转化为以u为根的子树,u的父亲为fa
int d = G[u].size(); //节点u的相邻点的个数
for(int i = 0; i < d; ++i) { //循环遍历跟这个节点相连接的d个节点。
int v = G[u][i]; //节点u的第i个相邻点v
if(fa != v) dfs(v, p[v] = u); //把v的父亲节点设为u,然后递归转化为以v为根的子树
//一定要判断v是否和其父亲节点相等!
}
}
int main() {
cin >> n;
for(int i = 0; i < n-1; i++) { //输入n-1条边
int u, v;
cin >> u >> v;
G[u].push_back(v);
G[v].push_back(u);
}
int root;
cin >> root; //指定根节点。
p[root] = -1; //设定根节点的父亲节点为-1,代表根节点没有父亲节点。
dfs(root, -1);
for(int i = 0; i < n; ++i) {
cout << p[i] << endl;
}
return 0;
}
南阳理工oj有一道题:
吝啬的国度
时间限制:1000 ms | 内存限制:65535 KB
难度:3
描述
在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来。现在,Tom在第S号城市,他有张该国地图,他想知道如果自己要去参观第T号城市,必须经过的前一个城市是几号城市(假设你不走重复的路)。
输入
第一行输入一个整数M表示测试数据共有M(1<=M<=5)组
每组测试数据的第一行输入一个正整数N(1<=N<=100000)和一个正整数S(1<=S<=100000),N表示城市的总个数,S表示参观者所在城市的编号
随后的N-1行,每行有两个正整数a,b(1<=a,b<=N),表示第a号城市和第b号城市之间有一条路连通。
输出
每组测试数据输N个正整数,其中,第i个数表示从S走到i号城市,必须要经过的上一个城市的编号。(其中i=S时,请输出-1)
样例输入
1
10 1
1 9
1 8
8 10
10 3
8 6
1 2
10 4
9 5
3 7
样例输出
-1 1 10 10 9 8 3 1 1 8
简单的无根树转换成有根树;
代码:
跟上一个没啥区别:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#define MAX 1000
using namespace std;
int p[MAX];
vector<int >G[MAX];
int n;
void dfs(int u,int fa)
{
int d=G[u].size();
for(int i=0;i<d;++i)
{
int v=G[u][i];
if(fa!=v)
{
dfs(v,p[v]=u);//u是v的父亲;
}
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int root;
scanf("%d%d",&n,&root);
for(int i=0;i<n-1;++i)
{
int u,v;
cin>>u>>v;
g[u].push_back(v);
g[v].push_back(u);
}
p[root]=-1;
dfs(root,-1);
for(int i=1;i<=n;++i)
{
printf("%d%c",p[i],(i==n)?'\n':' ');
}
}
}