探索数据

一、探索数据

 1.1、数据质量分析

 1.2、数据特征分析

   1.2.1、特征提取、转换和选择

 1.3、数据可视化

 1.4、数据预处理

 1.5、组装

  前面几节我们对数据集进行了探索,之后进行大量的数据清理、转换等数据预处理工作,接着进行构建模型、评估模型。评估模型前我们需要将数据集随机划分为训练集和测试集。假如数据有变化,如新增数据,如何保证训练集和测试集上的操作保持一致?如果数据清理、数据转换等有很多步骤,如何保证这些步骤依次执行?
  采用Spark Pipeline能很好解决这些问题。也就是说,我们只要把这些任务作为Pipeline的Stage,按照其本身的执行次序把这些stage组装到一个Pipeline上即可。当然,如果任务比较复杂,我们也可以采用多个Pipeline,然后把这些Pipeline 组装到一个新的

 1.6、模型选择或调优

  1.6.1、模型评估

 1.7、保存模型

   训练、优化模型后,我们需要保存模型,然后把模型移植或部署到其他环境中。
  本节主要介绍如何保存模型、如何部署模型等内容,以下是具体示例代码。
1)保存拟合后的流水线到磁盘:

	model.write.overwrite( ).save ("/ tmp/spark-logistic-regress ion-model")

2)保存未拟合的流水线到磁盘:

	 pipeline.write.overwrite().save("/tmp/ spark-logistic-regression-model")

3)把拟合后的流水线部署到其他环境中:

	  val sameModel = pipelineModel.load("/tmp/spark-logistic-regression-mode1")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值