数据向量化

**

一些关于神经网络训练的技巧

**
1.数据向量化–加速代码运行效率
神经网络的训练通常需要大量的数据,而大量的数据意味着计算机需要有强大的计算能力。为了减少神经网络的训练时间,通常我们会对数据进行向量化,用矩阵运算代替for循环。
#2.超参数的设置
超参数的设置采用由粗到细的方式。
在这里插入图片描述如上图,需要设置两个超参数,首先我们在整个范围内进行一个初略的搜索,选取训练结果最好的超参数点。然后在该点的小范围内进行更加精细的搜索。

batch_size的设置
batch_size的大小通常设置为2的n次方,根据训练样本的大小进行对n进行确定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值