opencv代码分析--hough变换识别圆

本文介绍了OpenCV中识别圆的基本原理,包括使用Canny算子进行二值化边缘检测,然后在每个边缘点的法线上寻找距离为特定半径的点,积累计数,当计数值超过阈值时确定圆心。代码分析部分聚焦于modulesimgprocsrchough.cpp文件的icvHoughCirclesGradient函数。
摘要由CSDN通过智能技术生成

一、基本原理

opencv中圆识别的基本原理如下:

1、canny算子求图像的单像素二值化边缘

2、假设我们需要找半径为R的所有圆,则对于边缘图中的每一个边缘点,该边缘点的切线的法线方向上(正负两个方向),寻找到该边缘点距离为R的点,将该点的计数加1(初始化所有点的计数都是0)

3、找到计数值大于门限值的点,即圆心所在的点

 二、代码分析

代码在/modules\imgproc\src\hough.cpp文件icvHoughCirclesGradient函数中

 

static void
icvHoughCirclesGradient( CvMat* img, float dp, float min_dist,
                         int min_radius, int max_radius,
                         int canny_threshold, int acc_threshold,
                         CvSeq* circles, int circles_max )
{
//参数:
//img: 输入图像
//dp: 识别精度,1.0表示按照原图精度
//min_dist: 圆心点位置识别精度
//min_radius: 所需要找的圆的最小半径
//max_radius:所需要找的圆的最大半径
//canny_threshold:canny算子的高阀值
//acc_threshold:累加器阀值,计数大于改阀值的点即被认为是可能的圆心
//circles: 保存找到的符合条件的所有圆
//circles_max: 最多需要的找到的圆的个数

	const int SHIFT = 10, ONE = 1 << SHIFT, R_THRESH = 30;
	cv::Ptr<CvMat> dx, dy;
	cv::Ptr<CvMat> edges, accum, dist_buf;
	std::vector<int> sort_buf;
	cv::Ptr<CvMemStorage> storage;
	
	int x, y, i, j, k, center_count, nz_count;
	float min_radius2 = (float)min_radius*min_radius;
	float max_radius2 = (float)max_radius*max_radius;
	int rows, cols, arows, acols;
	int astep, *adata;
	float* ddata;
	CvSeq *nz, *centers;
	float idp, dr;
	CvSeqReader reader;
	
	//canny算子求单像素二值化边缘,保存在edges变量中
	edges = cvCreateMat( img->rows, img->cols, CV_8UC1 );
	cvCanny( img, edges, MAX(canny_thresh
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值