【深度学习】最强算法之:一文掌握GNN与GCN的异同点,再也不迷路。

1、引言

小屌丝:鱼哥,能不能给我讲一下 GCN和GNN的区别啊
小鱼:这还区分不出来?
小屌丝:嗯, 确实有点难区分
小鱼:你看啊, 中间的字母, 一个是C 一个是N ,
小屌丝:哇哦…鱼哥,你挺坏的哦
小鱼:我… 没有啊
在这里插入图片描述

小屌丝:鱼哥,那…我知道了哦
小鱼:你知道什么了?
小屌丝:你要是正儿八经的跟我说一说GCN 和GNN的差异,我就告诉你
小鱼:还能不能处朋友了。
小屌丝: 看你表现
小鱼:我会把你刚刚的话,说给小芸的
小屌丝:… 好吧, 老地方。
小鱼:这还差不多。

2、GNN与GCN的异同点

2.1 定义

  • GNN

    • 图神经网络是一种能够处理图结构数据的神经网络。
    • 它通过对图中的节点和边进行编码,将图结构数据转化为神经网络可以处理的向量表示,进而实现节点分类、链接预测等任务。
      在这里插入图片描述
  • GCN

    • 图卷积网络是图神经网络的一个子集,专注于通过卷积操作来提取图结构数据中的特征。
    • GCN通过聚合邻居节点的信息来更新节点的表示,从而捕捉图中的局部和全局结构信息。

2.2 核心原理

  • GNN

    • 通过迭代的方式更新节点的表示。
    • 在每一次迭代中,每个节点都会聚合其邻居节点的信息,并根据聚合结果更新自身的表示。这个过程会不断进行,直到达到预设的迭代次数或满足某种收敛条件。
  • GCN

    • 利用卷积操作来聚合邻居节点的信息。
    • 在GCN中,每个节点都会通过卷积核与邻居节点进行卷积操作,从而提取出局部特征。这些局部特征随后会被用于更新节点的表示。

在这里插入图片描述

2.3 实现方式

  • GNN

    • 实现方式通常包括节点表示初始化、邻居节点信息聚合和节点表示更新三个步骤。
      • 在初始化阶段,每个节点都会被赋予一个初始的向量表示。
      • 在聚合阶段,每个节点会聚合其邻居节点的信息。
      • 在更新阶段,节点会根据聚合结果更新自身的表示。
  • GCN

    • 实现方式通常基于神经网络框架(如TensorFlow、PyTorch等)。
      • GCN通过定义卷积层来实现邻居节点信息的聚合。
      • 每个卷积层都会根据邻居节点的表示和权重矩阵计算出新的节点表示。
      • 通过堆叠多个卷积层,GCN可以提取出不同层次的图结构特征。

2.4 应用场景

  • GNN

    • GNN在诸多领域都有广泛应用,如社交网络分析、推荐系统、生物信息学等。
      • 在社交网络中,GNN可以用于分析用户之间的关系和兴趣;
      • 在推荐系统中,GNN可以利用用户-物品图进行精准推荐;
      • 在生物信息学中,GNN可以应用于蛋白质相互作用网络的分析。
  • GCN

    • GCN同样适用于多种场景,特别是在需要捕捉图结构数据中的局部和全局特征的任务中表现优异。如:
      • 在文本分类中,GCN可以将文档视为图结构数据,其中节点代表单词或句子,边代表单词之间的关系;
      • 在图像识别中,GCN可以利用图像中的像素和邻域关系构建图结构,从而提取出更有效的特征。

2.5 代码示例

2.5.1 GCN代码示例

代码实例

# -*- coding:utf-8 -*-
# @Time   : 2024-04-05
# @Author : Carl_DJ


**import torch  
import torch.nn as nn  
import torch.nn.functional as F  
  
# 定义GCN层  
class GCNLayer(nn.Module):  
    def __init__(self, in_features, out_features):  
        super(GCNLayer, self).__init__()  
        # 定义权重矩阵  
        self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))  
        # 初始化权重  
        nn.init.xavier_uniform_(self.weight)  
          
    def forward(self, input, adj):  
        # 输入与权重矩阵相乘  
        support = torch.mm(input, self.weight)  
        # 利用邻接矩阵进行稀疏矩阵乘法,实现卷积操作  
        output = torch.spmm(adj, support)  
        return output  
  
# 定义GCN网络  
class GCN(nn.Module):  
    def __init__(self, nfeat, nhid, nclass, dropout):  
        super(GCN, self).__init__()  
        # 定义两层GCN  
        self.gc1 = GCNLayer(nfeat, nhid)  
        self.gc2 = GCNLayer(nhid, nclass)  
        # 定义dropout层  
        self.dropout = nn.Dropout(p=dropout)  
          
    def forward(self, x, adj):  
        # 第一层GCN  
        x = F.relu(self.gc1(x, adj))  
        # dropout层  
        x = self.dropout(x)  
        # 第二层GCN  
        x = self.gc2(x, adj)  
        # 应用softmax得到概率分布  
        return F.log_softmax(x, dim=1)  
  


在这里插入图片描述

2.5.2 GNN代码示例

代码实例

# -*- coding:utf-8 -*-
# @Time   : 2024-04-05
# @Author : Carl_DJ

import torch  
import torch.nn as nn  
import torch.nn.functional as F  
  
# 定义GNN的节点更新函数  
class GNNUpdate(nn.Module):  
    def __init__(self, in_features, out_features):  
        super(GNNUpdate, self).__init__()  
        # 定义一个线性层,用于从节点的当前表示和聚合的邻居信息中更新节点的表示  
        self.linear = nn.Linear(in_features, out_features)  
  
    def forward(self, node_feature, neighbor_features):  
        # 聚合邻居节点的特征,这里简单地使用了求和的方式  
        aggregated_neighbor_features = torch.sum(neighbor_features, dim=1)  
        # 将节点自身的特征与聚合的邻居特征拼接起来  
        combined_features = torch.cat([node_feature, aggregated_neighbor_features], dim=1)  
        # 通过线性层更新节点的表示  
        updated_node_feature = self.linear(combined_features)  
        return updated_node_feature  
  
# 定义GNN网络  
class GNN(nn.Module):  
    def __init__(self, nfeat, nhid, nclass, num_iterations):  
        super(GNN, self).__init__()  
        # 输入特征维度与隐藏层维度的和,因为我们需要拼接节点自身特征和邻居特征  
        self.update_func = GNNUpdate(nfeat + nhid, nhid)  
        # 输出层,将隐藏层特征映射到最终的输出类别数  
        self.output_layer = nn.Linear(nhid, nclass)  
        # 设置图神经网络迭代的次数  
        self.num_iterations = num_iterations  
  
    def forward(self, node_features, adj_list):  
        # 初始化消息矩阵,用于存储邻居节点的聚合信息  
        messages = torch.zeros(node_features.size(0), self.update_func.linear.in_features).to(node_features.device)  
  
        # 根据邻接列表迭代更新每个节点的表示  
        for _ in range(self.num_iterations):  
            # 遍历所有节点  
            for node_idx, neighbors in enumerate(adj_list):  
                # 获取当前节点的特征  
                node_feature = node_features[node_idx].view(1, -1)  
                # 提取邻居节点的特征  
                neighbor_features = node_features[neighbors]  
                # 调用更新函数,获取更新后的节点表示  
                updated_node_feature = self.update_func(node_feature, neighbor_features)  
                # 将更新后的节点表示存储到消息矩阵中  
                messages[node_idx] = updated_node_feature.view(-1)  
  
            # 更新节点的特征为最新聚合的消息  
            node_features = messages  
  
        # 最后的节点特征通过输出层得到每个节点的预测结果  
        output = self.output_layer(node_features)  
        # 应用softmax得到概率分布(如果需要的话,这通常用于分类任务)  
        return F.log_softmax(output, dim=1)  
  

在这里插入图片描述

3、总结

GNN和GCN作为处理图结构数据的强大工具,在多个领域取得了显著成果。它们的异同点主要体现在以下几个方面:

  • 定义:GNN是一种能够处理图结构数据的神经网络,而GCN是GNN的一个子集,专注于通过卷积操作来提取特征。

  • 核心原理:GNN通过迭代的方式更新节点表示,每次迭代都会聚合邻居节点的信息。GCN则通过卷积操作聚合邻居节点的信息,从而提取局部特征。

  • 实现方式:GNN的实现较为灵活,可以根据具体任务设计不同的聚合和更新策略。GCN则通常基于神经网络框架实现,通过定义卷积层来聚合邻居节点信息。

  • 应用场景:GNN和GCN都适用于需要处理图结构数据的场景,如社交网络分析、推荐系统、生物信息学等。GCN在处理文本分类、图像识别等任务中表现出色,而GNN则更适用于复杂图结构数据的处理和分析。

总的来说,GNN和GCN都是处理图结构数据的有效工具,它们各自具有独特的优势和适用场景。在实际应用中,我们可以根据具体任务和数据集选择合适的算法来实现最佳的性能

我是小鱼

  • CSDN 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)测评一、二等奖获得者

关注小鱼,学习【机器学习】&【深度学习】领域的知识。

  • 33
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Python是一个功能强大且易于学习的编程语言,已成为深度学习和图神经网络(GNN)的主要编程语言之一。在Python上构建深度学习GNN,我们需要注意以下几。 1.首先,我们需要确定要使用的框架。Python有许多深度学习框架,如TensorFlow, PyTorch和Keras等,都可用于构建GNN。每个框架都有其独特的优和局限性,应根据项目的具体需求选择合适的框架。 2.其次,我们需要学习GNN的基础知识并了解其层次结构,从而选择不同层次的GNN算法来解决特定的任务。 3.接下来,我们需要理解节嵌入、图嵌入、图卷积等关键概念,并掌握如何在Python中使用它们构建GNN模型。 4.此外,我们还需要了解如何从数据中提取相关特征,并使用这些特征指导GNN的学习过程。 5.最后,我们需要进行模型的训练和测试,通过调整超参数来提高模型的性能。 总的来说,Python是构建深度学习GNN的理想语言,只要我们掌握了相关知识和技能,就可以轻松地构建高效的GNN模型来解决各种图数据相关的问题。 ### 回答2: Python是一种高级编程语言,广泛应用于各种计算机应用领域。在机器学习和人工智能领域,Python成为了最常用的编程语言之一。特别是在深度学习和图神经网络(GNN)领域,Python的使用频率更是最高的。 Python构建深度学习GNN可以使用多种流行的深度学习库和图计算库。其中,PyTorch是最重要的深度学习库之一,因为它提供了丰富的深度学习模块和工具,例如自动微分、神经网络层、优化算法等。PyTorch也支持图神经网络领域最常用的图神经网络计算库DGL(Deep Graph Library)。 使用PyTorch和DGL可以构建各种图神经网络模型。例如,可以使用GCN(Graph Convolutional Network)模型来对图进行分类、聚类和预测。GCN模型基于卷积神经网络的结构,但是使用由图定义的邻接矩阵和特征矩阵来替代卷积核。GCN模型在节分类、推荐系统和社交网络分析等领域具有广泛的应用。 另一个重要的库是PyG(PyTorch Geometric)。PyG是基于PyTorch的图神经网络架构,提供了更加高级的图神经网络模型和操作。例如,可以使用GAT(Graph Attention Network)模型来学习图结构中的节关系。GAT模型使用多头注意力机制,可以学习节之间复杂的非线性关系。GAT模型特别适用于社交网络和知识图谱分析。 总之,Python构建深度学习GNN需要掌握多种深度学习库和图计算库,例如PyTorch、DGL、PyG等。使用这些工具可以构建各种高级的图神经网络模型,用于图结构数据的分析、预测和决策。 ### 回答3: 近年来,图神经网络(GNN)成为了深度学习领域中备受关注的一个新兴方向。Python 作为一种功能强大的编程语言,被广泛应用于数据科学、机器学习、人工智能等领域,自然也是构建 GNN 的首选语言之一。 首先,Python 社区中有很多为 GNN 提供了良好支持的开源库和框架。例如,PyTorch、TensorFlow 和 MXNet 等都提供了图神经网络相关的模块、函数和工具。此外,还有一些专门的 GNN 库,如 DGL、PyG、Spektral 等,它们能够更加简便地构建 GNN、优化模型结构和训练模型。 其次,Python 相比其他语言更加易于学习和使用。Python 的语法结构简单易懂,而且开源社区提供了丰富的教程和样例代码,能够快速帮助新手入门。此外,Python 也具有强大的数据处理和可视化能力,能够方便地展示数据、分析特征和构建模型,为 GNN 的研究提供了充足支持。 最后,Python 可以快速实现一些最新的 GNN 模型,其中最著名的是图卷积网络(GCN)。以 PyTorch 为例,在 PyTorch 中支持 GCN 的库有 PyG。它提供了很多现成的 GCN 模型,如 GAT、GraphSAGE 等,以及一些其他常用的图神经网络模型。 总之,Python 的开源库、易用性和快速实现 GNN 模型等优势,使 Python 成为了构建深度学习 GNN 最佳的选择之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carl_奕然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值