【深度学习】最强算法之:Diffusion扩散模型

1、引言

小屌丝:鱼哥, 看你无精打采的,咋了,被煮了啊
小鱼:…这是累的啊
小屌丝:矮油~ 鱼哥这是干啥累的啊
小鱼:… 加班啊,工作啊。
小屌丝:哎呀~~ 这真是辛苦啊 , 咱们去放松放松?
小鱼:说的也挺有道理的。
小屌丝:必须懂鱼哥你啊
小鱼:嘿嘿
在这里插入图片描述

小屌丝:走着。
小鱼:别,等我一小会
小屌丝: 这咋的了,枪都上膛了,还想退缩?
小鱼:… 我把手里这点事情搞完
小屌丝:… 你啥时候也这么磨蹭了。
小鱼:不能急不可耐, 不能急不可耐。
小屌丝:…
小鱼: 青春没有售价,泡澡加上SPA。
在这里插入图片描述
小屌丝:鱼哥,这最后那句话,有点…

2、Diffusion扩散模型

2.1 前言

在深度学习领域中,Diffusion扩散模型以其独特的生成能力和广泛的应用前景,逐渐成为研究者们关注的焦点。

Diffusion模型不仅能够在图像生成、音频生成等领域取得令人瞩目的成果,而且还在强化学习、多任务学习等领域展现出巨大的潜力。

接下来, 我们就去了解Diffusion扩散模型的特性吧。

2.1 定义

Diffusion扩散模型是一种生成模型,其核心思想是通过模拟物理中的扩散过程来生成数据。

在Diffusion模型中,数据被视为一种“浓度”分布,而模型的训练过程则是对这种分布进行逐步破坏(**前向扩散)和恢复(逆向扩散)**的过程。

通过这个过程,模型能够学习到数据的内在结构和分布规律,从而生成新的、具有类似特征的数据。

2.2 原理

Diffusion扩散模型的原理可以分为前向扩散过程和逆向扩散过程两个部分。

  • 前向扩散过程:在前向扩散过程中,模型通过对原始数据添加噪声来逐渐破坏其结构。

    • 这个过程可以看作是一种“模糊化”或“混合化”的过程,使得数据逐渐失去其原有的特征。
    • 在Diffusion模型中,噪声的添加是逐步进行的,每个时间步都会添加一定量的噪声,直到数据完全失去其原有的特征。
  • 逆向扩散过程:在逆向扩散过程中,模型通过学习如何逐步去除噪声来恢复数据的原始结构。

    • 这个过程是前向扩散过程的逆过程,也是Diffusion模型生成新数据的关键步骤。
    • 在训练过程中,模型会学习到如何从噪声数据中恢复出原始数据,从而具备生成新数据的能力。

2.3 实现方式

Diffusion扩散模型的实现方式主要包括以下几个步骤:

  • 数据预处理:对原始数据进行适当的格式化以便于模型训练。这包括数据清洗、数据标准化、数据增强等步骤。
  • 前向扩散过程实现:在每个时间步上向原始数据添加一定量的噪声,逐步破坏其结构。这个过程可以通过在原始数据上添加高斯噪声等方式实现。
  • 逆向扩散过程实现:通过训练模型来学习如何从噪声数据中恢复出原始数据。这个过程可以通过最小化重构误差等方式实现。
  • 采样过程实现:在训练完成后,通过从标准高斯分布中采样得到初始噪声数据,然后利用训练好的模型进行逆向扩散过程,生成新的数据。

在这里插入图片描述

2.4 算法公式

Diffusion扩散模型的算法公式主要包括前向扩散过程和逆向扩散过程的数学表达式。其中,前向扩散过程可以通过以下公式表示:

( q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) ) (q(x_t | x_{t-1}) = N(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_tI)) (q(xtxt1)=N(xt;1βt xt1,βtI))

其中, ( x t ) (x_t) (xt) 表示第 ( t ) (t) (t) 个时间步的数据, ( N ) (N) (N) 表示高斯分布, ( β t ) (\beta_t) (βt) 是控制噪声添加量的参数。

逆向扩散过程的数学表达式则相对复杂,通常需要通过训练模型来得到。

2.5 代码示例

# -*- coding:utf-8 -*-
# @Time   : 2024-05-10
# @Author : Carl_DJ

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# 设置超参数
batch_size = 64
learning_rate = 0.001
epochs = 100
timesteps = 1000  # 扩散过程的时间步数

# 数据预处理和加载
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5])
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

# 定义UNet模型作为去噪网络
class UNet(nn.Module):
    def __init__(self):
        super(UNet, self).__init__()
        # 简化的UNet模型定义
        self.encoder = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU()
        )
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(128, 64, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(64, 1, kernel_size=3, padding=1),
            nn.Tanh()
        )
    
    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x

# 初始化模型
model = UNet()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()

# 定义扩散过程的beta调度
betas = torch.linspace(0.0001, 0.02, timesteps)
alphas = 1 - betas
alphas_cumprod = torch.cumprod(alphas, 0)

# 训练模型
for epoch in range(epochs):
    for i, (imgs, _) in enumerate(train_loader):
        imgs = imgs.to(torch.device('cpu'))
        
        # 随机选择时间步
        t = torch.randint(0, timesteps, (batch_size,)).long()
        
        # 获取对应的alpha_cumprod
        alpha_cumprod_t = alphas_cumprod[t].view(-1, 1, 1, 1)
        
        # 添加噪声
        noise = torch.randn_like(imgs)
        noisy_imgs = torch.sqrt(alpha_cumprod_t) * imgs + torch.sqrt(1 - alpha_cumprod_t) * noise
        
        # 预测去噪图像
        optimizer.zero_grad()
        pred_noise = model(noisy_imgs)
        
        # 计算损失
        loss = criterion(pred_noise, noise)
        
        # 反向传播和优化
        loss.backward()
        optimizer.step()
        
        # 打印进度
        if (i + 1) % 100 == 0:
            print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item()}")



代码解析

  • 定义UNet模型作为去噪网络

    • 首先,定义了数据预处理步骤和数据加载器,
    • 然后、定义了UNet模型和相关的优化器、损失函数。
  • 扩散过程通过逐步向图像添加噪声来进行模拟

    • 在每一个训练步骤中,我们随机选择一个时间步T,并根据该时间步计算相应的噪声水平。
    • 然后,将噪声添加到原始图像上,并让模型预测这些噪声。
    • 损失函数计算模型预测的噪声与实际添加的噪声之间的均方误差(MSE),并通过反向传播优化模型参数。
  • 通过训练,让模型学会从加噪的图像中去噪,最终可以用于从随机噪声生成新的数据。

3、总结

Diffusion扩散模型作为一种强大的生成模型,在深度学习领域具有广泛的应用前景。

它不仅能够生成高质量的图像和音频数据,而且还在强化学习、多任务学习等领域展现出巨大的潜力。
所以,学好Diffusion扩散模型,还是很有必要的。

我是小鱼

  • CSDN 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)评测一等奖获得者

关注小鱼,学习【机器学习】&【深度学习】领域的知识。

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carl_奕然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值