【机器学习】必会降维算法之:特征选择(Feature Selection)

1、引言

在机器学习中,特征选择(Feature Selection)是一种降维技术,旨在从原始特征中选择出最有价值的特征子集,以提高模型的性能。

接下来,我们将深入了解特征选择。

2、特征选择(Feature Selection)

2.1 定义

特征选择是指在构建机器学习模型时,从给定的特征集合中选出对模型预测性能贡献最大的一部分特征,而不是使用全部特征。

这样做的目的是减少数据的维度,提高模型的训练效率,降低过拟合的风险,并可能提高模型的泛化能力。
在这里插入图片描述

2.2 应用场景

  • 高维数据处理:当数据集具有大量特征时(如文本分类、基因数据分析),特征选择有助于降低计算复杂度。
  • 提升模型性能:通过去除无关或冗余特征,提高模型的预测准确率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carl_奕然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>