特征选择(Feature Selection)
1、引言
在机器学习中,特征选择(Feature Selection)是一种降维技术,旨在从原始特征中选择出最有价值的特征子集,以提高模型的性能。
接下来,我们将深入了解特征选择。
2、特征选择(Feature Selection)
2.1 定义
特征选择是指在构建机器学习模型时,从给定的特征集合中选出对模型预测性能贡献最大的一部分特征,而不是使用全部特征。
这样做的目的是减少数据的维度,提高模型的训练效率,降低过拟合的风险,并可能提高模型的泛化能力。

2.2 应用场景
- 高维数据处理:当数据集具有大量特征时(如文本分类、基因数据分析),特征选择有助于降低计算复杂度。
- 提升模型性能:通过去除无关或冗余特征,提高模型的预测准确率
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



