1、引言
小鱼:最近小屌丝 在休假,难得的清闲, 我这也闲言少叙,书归正传,
咱就聊一聊 降为算法之:多维缩放(MDS)
在机器学习和数据科学领域,多维缩放(Multidimensional Scaling,简称MDS)是一种常用的降维技术。
它能够在尽可能保留原始数据点间距离的前提下,将高维数据映射到低维空间中。
2、多维缩放(MDS)
2.1 定义
多维缩放(MDS)是一种统计学方法,用于分析相似度或距离的数据。
它的目标是在低维空间中定位一组对象,使得这些对象之间的距离尽可能地与原始高维空间中的距离相匹配。
2.2 应用场景
MDS在多个领域都有广泛的应用,包括但不限于:
- 市场研究:分析消费者对不同产品或服务的感知和偏好,帮助企业进行市场定位和产品差异化策略的制定。
- 品牌管理:通过降维后的二维或三维空间图展示不同品牌之间的相似性和差