【机器学习】必会降维算法之:多维缩放(MDS)

1、引言

小鱼:最近小屌丝 在休假,难得的清闲, 我这也闲言少叙,书归正传,
咱就聊一聊 降为算法之:多维缩放(MDS)

在机器学习和数据科学领域,多维缩放(Multidimensional Scaling,简称MDS)是一种常用的降维技术。

它能够在尽可能保留原始数据点间距离的前提下,将高维数据映射到低维空间中。

2、多维缩放(MDS)

2.1 定义

多维缩放(MDS)是一种统计学方法,用于分析相似度或距离的数据。

它的目标是在低维空间中定位一组对象,使得这些对象之间的距离尽可能地与原始高维空间中的距离相匹配。

2.2 应用场景

MDS在多个领域都有广泛的应用,包括但不限于:

  • 市场研究:分析消费者对不同产品或服务的感知和偏好,帮助企业进行市场定位和产品差异化策略的制定。
  • 品牌管理:通过降维后的二维或三维空间图展示不同品牌之间的相似性和差
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carl_奕然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值