深度学习环境配置002-驱动程序,CUDA,CUDNN在Windows下的安装【手把手教学,适合入门新手小白】

驱动程序,CUDA,CUDNN在Windows下的安装

  • 本章需要依次下载驱动程序,cuda和cudnn。

  • cuda的安装版本要不大于驱动程序。比如我的驱动程序是12.7,但我的cuda版本选择11.1。

  • cudnn的安装要根据cuda的版本来确定。

1.1 驱动程序下载

先查看驱动程序,若有则不安装,没有则安装。

1.1.1 查看方法

方法1:打开命令窗口输入nvidia-smi判断是否有驱动,如下图知道驱动为12.7。
在这里插入图片描述

方法2:1.打开NVIDIA控制面板。在这里插入图片描述

2.点击帮助。

3.点击系统信息。
在这里插入图片描述

4.点击组件。

5.发现该电脑驱动是12.7。
在这里插入图片描述

1.1.2 安装方法

1.1.2.1查看电脑显卡型号

1.快捷键win+x,点击设备管理器。

在这里插入图片描述

2.展开显示适配器。

3.查看结果为:3050。

在这里插入图片描述

1.1.2.2下载驱动

1.进入官网:NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA

2.选择型号:根据前面查询到的显卡来选择。

3.开始搜索。

在这里插入图片描述

4.选择studio版进行获取下载。
在这里插入图片描述
5.点击立即下载。
在这里插入图片描述
6.点击ok键。
在这里插入图片描述

7.点击同意并继续。
在这里插入图片描述

8.点击下一步(选不选自定义安装其实无所谓)。
在这里插入图片描述

9.点击下一步。
在这里插入图片描述

10.在命令窗口输入nvidia-smi验证显示安装成功。

在这里插入图片描述

1.2 cuda下载

1.2.1 查看方法

打开命令窗口:输入nvcc -V,如果显示版本那么本节可以跳过,无需下载。

在这里插入图片描述

1.2.2 安装方法

1.进入官网选择版本下载:CUDA Toolkit Archive | NVIDIA Developer

2.我驱动是12.7,但选择的是cuda11.1,原则上比驱动小就行,我选择这个cuda11.1是因为看到很多博客和复现代码都是这个。

在这里插入图片描述

3.依次选择windows,x86_64,10,exe(local),然后点击download就开始了。

在这里插入图片描述

4.下载完成就开始安装了,点击OK(我一般选择默认文件夹,不然又会有很多问题,血的教训真的!!!)。后面其实就是无脑下一步是最靠谱的,新手不要乱改。

在这里插入图片描述

5.点击同意并继续

在这里插入图片描述

6.选择自定义(不选择自定义好像也没有什么)再点击下一步。

在这里插入图片描述

7.继续点击下一步。

在这里插入图片描述

8.继续点击下一步,但记住这几个安装的位置,建议别改位置,后续要用到

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1

在这里插入图片描述
9.同意并点击next。
在这里插入图片描述

10.检查是否安装成功,打开命令窗口输入:

nvcc -V

如下图出现11.1表示成功安装。

在这里插入图片描述

1.2.3 安装失败解决

1.搜索“系统环境变量”,并点击打开。

在这里插入图片描述

2.选择“高级”并点击环境变量。
在这里插入图片描述

3.查看系统变量中是否有变量CUDA_PATH和CUDA_PATH_V11.1(根据自己的版本来)。若有检查是否正确,没有则进行添加。添加路径为1.2.2安装方法的第8步中的路径:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1

在这里插入图片描述

4.查看系统变量中的path是否有\bin。

在这里插入图片描述

5.这个路径只是在之前的路径加了一个“\bin”。

在这里插入图片描述

6.再次进入命令窗口检查。若还是没有,要么是步骤有漏,要么就只能卸载再来一次了。

1.3 cudnn下载

1.3.1 查看方法

1.打开

C:\Program Files\NVIDIA Computing Toolkit\CUDA\v11.1\extras\demo_suite

(不更改C盘路径的好处在于就把我的11.1换成你的版本就行)。

查看是否有文件bandwidthTest.exe以及deviceQuery.exe,若存在则输入cmd进入命令窗口。

在这里插入图片描述

2.命令窗口输入“bandwidthTest.exe”,出现pass表示成功。
在这里插入图片描述

3.命令窗口输入“deviceQuery.exe”,出现版本号表示成功。
在这里插入图片描述

1.3.2 安装方法

1.cudnn官网下载地址:cuDNN Archive | NVIDIA Developer

2.根据我的cuda版本11.1和操作系统win进行选择。
在这里插入图片描述

3.下载压缩包后解压并找到bin、lib、include三个文件。
在这里插入图片描述

4.将cudnn中的bin、lib、include三个文件复制到cuda对应位置(还是之前说要记住的位置)进行替换。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1

在这里插入图片描述

5.检验cudnn安装是否正确,看前面的“查看方法”。

1.4 参考资料

1.关于驱动程序安装,这个视频也很清楚,

【大学习】之 如何下载官方英伟达显卡驱动。我们经常听到的“打显卡驱动”就是这个操作~_哔哩哔哩_bilibili

2.关于cudn和cudnn的详细教程,亲测有效,感谢大神详解。讲解思路也借鉴了一部分。

CUDA与CUDNN在Windows下的安装与配置(超级详细版)_windows安装cudnn-CSDN博客

3.驱动程序,cuda,cudnn的全套安装,在我最初开始学习也给了参考,感谢。

windows系统安装显卡驱动软件和CUDA11.1的详细教程_cuda驱动-CSDN博客


恭喜,你已经成功完成了cuda相关的硬件配置。一起继续加油下一步吧!

### 安装 CUDA cuDNN 对于 Windows 11 用户来说,在安装 CUDA 工具包 cuDNN 库时需要注意特定的操作流程。为了确保兼容性性能优化,建议按照官方指南进行操作。 #### 下载并安装 CUDA Toolkit 访问 NVIDIA 开发者网站上的 CUDA Toolkit 归档页面获取适用于 Windows 平台的指定版本工具包[^3]。选择与操作系统相匹配的安装文件,并遵循提示完成整个过程。如果采用 Tarball 压缩包形式,则需解压到自定义路径下再手动设置环境变量以便后续调用[^2]。 #### 获取及部署 cuDNN 库 前往 cuDNN 的下载专区挑选对应于已安裝之 CUDA 版本号(例如这里提到的是 CUDA 12.x)以及目标 OS 类型 (即 Win10/11)[^2]。下载完成后同样通过解压缩方式将其放置在适当位置;接着把 `bin` 文件夹加入系统的 PATH 变量之中,同时将 `include` `lib` 路径告知编译器以支持链接阶段的需求[^1]。 #### 验证安装成功与否 可以通过运行简单的测试程序来确认一切正常工作。比如编写一段利用 GPU 加速计算的小例子: ```cpp #include <stdio.h> __global__ void helloFromGPU() { printf("Hello, World! This is from the GPU.\n"); } int main() { printf("Hello, World! This is from the CPU.\n"); helloFromGPU<<<1, 1>>>(); cudaDeviceSynchronize(); return 0; } ``` 编译上述代码片段之前记得开启 Visual Studio 或其他 IDE 中有关 NVCC 编译选项的支持功能。执行完毕后应当能在终端看到来自不同设备的信息输出,这表明 CUDA 环境搭建无误。 #### PyTorch集成 考虑到提问中提及了 Python 3.9 PyTorch 2.3.1 的组合情况,当完成了前面几步之后就可以着手准备引入这些高级框架了。通常情况下只需借助 pip 工具就能快速搞定依赖关系管理问题: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121 ``` 这条命令会自动拉取适合当前硬件条件的最佳构建版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值