透明注意力(Transparent Attention)

Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. 2018. Training Deeper Neural Machine Translation Models with Transparent Attention. In Proceedings of EMNLP. Brussels, Belgium, 3028–3033. https://doi.org/10.18653/v1/D18-1338 \url{https://doi.org/10.18653/v1/D18-1338} https://doi.org/10.18653/v1/D18-1338

transformer 由编码层和解码层组成, 编码层只有最后一层的输出被解码层采用. 这意味着 编码层 的错误信号会随着编码器的深度传播. 这使得 transformer 受梯度消失或者爆炸问题困扰.

透明注意力是 将编码层的各层输出 加权后 作为 解码层各层的 (来自编码层的)输入.

假设 transformer 由 N 个 编码层(输出为 H i H_i Hi) 和 M 个 解码层(来自编码层的输入为 H ^ i \hat{H}_i H^i).

H ^ j : = ∑ i = 1 N e W i , j ∑ k = 1 N e W k , j H i \hat{H}_j:=\sum_{i=1}^N\frac{e^{W_{i,j}}}{\sum_{k=1}^N e^{W_{k,j}}}H_i H^j:=i=1Nk=1NeWk,jeWi,jHi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值