Deep Set

Deep Set是一种处理向量集合的模型,具有置换不变性,适用于图、点云等非向量样本。它通过Embedding和Dense层的组合学习模型,对集合元素进行线性和非线性运算。置换等变函数作为更精细的模型,每个位置的元素对应一个独立的输出函数,可以更好地捕捉元素间关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个样本一般会被看成是一个向量. 然后将样本标签丢给 机器去学习模型.
通常也有样本, 不是向量. 例如 图, 点云(矩阵), 持续图(2维向量集合), 文本(向量序列).
对这些样本一般使用向量化手法, 大家熟悉的是 word2vet, transformer. 这里我们了解一下 DeepSet.

文章参考 Deep Sets
有一些网文介绍也对此做了介绍.
纯翻译的 https://www.cnblogs.com/wangchangshuo/p/13853491.html
添加个人理解的 https://zhuanlan.zhihu.com/p/368357090
*(按键人写此, 目的是加深理解, 分享交流, 不做盈利. 故而不详细考证哪些人已经介绍过此文.)

1. 置换不变函数

DeepSet 处理的对象是 向量组成的集合 S, 输出是一个实数(或者向量).
Set \text{Set} Set 我集合范畴(范畴的对象看成是集合),
DeepSet : Set → R \text{DeepSet}:\text{Set} \to \R DeepSet:SetR
S ∈ Set \text{S} \in \text{Set} SSet, DeepSet ( S ) = DeepSet ( s 1 , s 2 , ⋯   , s n ) = DeepSet ( s 2 , s 1 , ⋯   , s n ) \text{DeepSet}(\text{S})=\text{DeepSet}(s_1,s_2,\cdots,s_n)=\text{DeepSet}(s_2,s_1,\cdots,s_n) DeepSet(S)=DeepSet(s1,s2,,sn)=DeepSet(s2,s1,,sn)
把话说清楚一些. 集合看成是矩阵. 每个元素是一个行向量 s i s_i si. 学习到模型只和集合有关系, 和集合中哪个向量摆在第哪一行没有关系,即
DeepSet ( s 1 , s 2 , ⋯   , s n ) = DeepSet ( s σ ( 1 ) , s σ ( 2 ) , ⋯   , s σ ( n ) ) . \text{DeepSet}(s_1,s_2,\cdots,s_n)=\text{DeepSet}(s_{\sigma(1)},s_{\sigma(2)},\cdots,s_{\sigma(n)}). DeepSet(s1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值