1、阿里技术路线汇总:
1.1 精排模型的演化关系
1.2 传统机器学习推荐模型
- 1.2.1 FM模型——稀疏数据下的特征组合
- 1.2.2 FFM模型——特征域感知FM模型
- 1.2.3 GBDT+LR——Facebook特征组合模型
- 1.2.4 MLR——阿里巴巴经典CTR预估模型
1.3 迈向深度学习时代
- 1.3.1 WDL——Google经典CTR预估模型
- 1.3.2 DCN——深度特征交叉网络
- 1.3.3 DCN-v2——谷歌改进版DCN模型
- 1.3.4 DIN——基于Attention的用户兴趣动态表达
- 1.3.5 DIEN——序列模型建模用户兴趣
- 1.3.6 BST——使用Transformer建模用户行为序列
- 1.3.7 DSIN——基于session的兴趣演化模型
- 1.3.8 MIMN——多通道用户兴趣网络
- 1.3.9 SIM——基于搜索的超长用户行为建模
- 1.3.10 CAN——特征交互新路线
2、MIMN——多通道用户兴趣网络
DIEN模型在做兴趣演化的时候有这样一个考量,在电商场景下用户的行为序列可能是跳跃的,比如用户在这个时间段全部看电子产品,另一个时间段全部看衣服,其间并没有时序关联。DIEN的设计思路是通过对目标广告进行显示的Attention操作,把Attention权重比较高的部分挑选出来,相当于挑选出比较相似的序列商品,然后经过GRU网络进行演化。