如何看待诺贝尔物理学奖颁给了机器学习与神经网络?

一、诺奖花落机器学习的意外与惊喜 

fd534c4d73214a1da3d0794173f3b4a5.png2024 年诺贝尔物理学奖授予机器学习与神经网络,这一结果着实让众人感到意外。就连获奖者约翰・霍普菲尔德和杰弗里・辛顿本人也直呼没想到。此次诺奖的颁发,打破了人们对传统物理学奖的认知。

机器学习与神经网络通常被认为是计算机科学领域的研究方向,与传统物理学的研究范畴似乎相去甚远。然而,仔细分析可以发现,这一决定并非毫无道理。霍普菲尔德和辛顿的工作将物理学的概念与方法应用于人工神经网络的结构设计和优化,展现了跨学科研究的巨大潜力。

 

霍普菲尔德在 20 世纪 80 年代初提出的 “霍普菲尔德网络”,是一种可以存储和重构信息的结构。他从物理学中的自旋系统获得灵感,将节点和连接模拟为自旋系统,通过调节网络的能量来保存图像。这一技术为计算神经科学提供了重要的理论工具,也为后来的神经网络架构提供了理论依据。

辛顿则进一步扩展了这些想法,参与提出了 “玻尔兹曼机”。在玻尔兹曼机中,学习被建模为一种概率采样和能量最小化的过程,类似于物理系统中的粒子如何相互作用并达到平衡状态。他的反向传播法更是为深度神经网络赋予了从海量数据中学习的强大能力。

此次诺奖的颁发,不仅是对两位科学家个人成就的肯定,更是对跨学科研究的鼓励。它提醒我们,在科学研究中,不同学科之间的交叉融合可以带来新的突破和发展。同时,也让我们对机器学习与神经网络在未来的发展充满期待。

二、机器学习的开创者与发展历程

0087c0154d414c8dbc15d4308226bd04.png

(一)霍普菲尔德的贡献

约翰・霍普菲尔德在 1982 年提出了 “霍普菲尔德网络”。这一网络的主要特点是所有神经元节点之间相互连接,形成全连接的网络结构。它具有对称连接和能量函数,能够用于存储和检索模式,就像大脑能够通过一点线索回想起完整的记忆一样,霍普菲尔德网络模拟了这种记忆过程。

霍普菲尔德网络在联想记忆和模式识别方面有着广泛的作用。例如,即使输入的信息不完整或带有噪声,它也能识别并纠正,有着类似于人脑的联想记忆功能。然而,这种网络也存在一些缺点,如记忆容量有限、模式间易干扰、对噪声容忍度低、同步更新不稳定等,这在实际应用中带来了一定的局限性。

但不可否认的是,霍普菲尔德网络为后来的神经网络研究提供了灵感。它促进了更多复杂的网络架构和训练方法的发展,其 “能量最小化” 思想影响了后续许多神经网络模型。霍普菲尔德网络被广泛应用于神经科学、计算机科学和优化问题等领域,在模式识别、联想记忆和优化算法方面发挥了重要作用,为推动现代人工智能和神经计算理论的发展起到了关键作用。同时,霍普菲尔德还对生物物理学和分子生物学做出了重要贡献,特别是在蛋白质折叠和生物系统的计算功能方面,他提出的 “Hopfield Barrier” 概念解释了蛋白质如何有效找到其折叠的最低能量状态。

(二)辛顿的贡献

杰弗里・辛顿在机器学习领域有着诸多重大贡献。他与特伦斯・塞伊诺夫斯基一起发明了玻尔兹曼机,这是一种基于统计物理学中玻尔兹曼分布的随机神经网络模型。玻尔兹曼机能够通过学习数据中的概率分布来进行推理和决策,对于理解复杂系统中的模式识别具有重要意义。它可以学习给定数据类型的特征元素,用于分类图像或创建新材料,帮助推动了当今机器学习的快速发展。

1986 年,辛顿与大卫・莱姆哈特等提出了误差反向传播算法(BP 算法),这一算法至今仍被所有大模型自监督学习算法所采用。此外,辛顿还提出了 AlexNet 模型,将深度神经网络、大数据与 GPU 相融合,并开创了第三次人工智能的研究热潮。辛顿的贡献为深度学习的复兴奠定了基础,使得神经网络得以在更复杂、更大规模的数据集上进行训练,从而在图像识别、语音识别、自然语言处理等任务中取得了巨大的成功。辛顿在神经网络方面的开创性工作塑造了为当今许多产品提供动力的人工智能系统。2018 年,辛顿与杨立昆和约书亚・本吉奥共同获得了当年的图灵奖。

三、机器学习与物理学的紧密联系

6e0fdb6c5e834ea888383c4de3529ad5.png

(一)机器学习与物理学的关系解读

机器学习与物理学之间存在着紧密而深刻的联系。广东科普讲师团成员、哈尔滨工业大学(深圳)计算机学院副院长何道敬表示,霍普菲尔德和辛顿两位科学家的工作为人工神经网络和机器学习的发展奠定了坚实基础,对当今科技发展和社会生活产生了深远影响,因此获得诺贝尔物理学奖实至名归。

霍普菲尔德网络和玻尔兹曼机对物理学有着重要的启发。以霍普菲尔德命名的霍普菲尔德神经网络是根据物理学原理设计的一种网络,每个单元由运算放大器和电容电阻等元件组成,相当于一个神经元。输入信号以电压形式加到各单元上,经过一段时间后,各部分的电流和电压达到某个稳定状态,其输出电压就表示问题的解答。而辛顿发明的玻尔兹曼机,也用到了很多统计物理学的工具,能够通过学习数据中的概率分布来进行推理和决策,对于理解复杂系统中的模式识别具有重要意义。

(二)物理学为机器学习提供的工具

物理学为机器学习的发展提供了多种工具。一方面,物理知识在理论和实验上都得到了明确的收集和验证,包含对自然现象和人类行为的抽象和总结。例如,经典力学和能量守恒定律为机器学习提供了有效的工具,在动力学系统建模中遵守能量守恒定律,有助于提高机器学习模型的合理性和泛化能力。

机器学习也验证了统计物理的想法。统计物理使用概率论和统计学的方法来研究大量微观粒子组成的宏观系统的整体行为,目标是通过分析组成物质的基本单元的行为来解释宏观物理现象。而机器学习将一些很基础的机构用简单的运算叠加在一起,创造出拥有巨大能量的集体行为。如今的 AI 模型恰恰验证了统计物理的想法,从这个角度看,机器学习和统计物理有着相似的原理。

例如,在材料科学领域,机器学习模型可以预测材料特性、发现新材料并设计更有效的材料合成过程,这与统计物理通过分析微观粒子行为来解释宏观物理现象的方法类似。在生物物理学中,机器学习技术用于分析生物分子结构、预测蛋白质折叠并开发新药,也体现了物理知识与机器学习的融合。

四、机器学习的广泛应用与影响

878432e169ad44edac201bf95b3f709b.png

(一)在日常生活中的应用

机器学习在无人驾驶中有着广泛的应用。它可以通过目标检测帮助车辆识别和跟踪周围的物体、行人、车辆等,从而避免碰撞和事故。在路径规划方面,机器学习可以预测交通状况、路况和路线选择,快速、安全地引导车辆到达目的地。同时,还能帮助车辆学习驾驶技能和行为模式,实现自动驾驶功能,以及进行实时定位和地图制作,为自动驾驶提供精准的定位和导航。此外,通过智能交互,机器学习可以实现车辆的智能语音交互、图像识别和手势识别等,提供更加人性化的驾驶体验。

在人脸识别领域,机器学习也发挥着重要作用。基于深度学习的人脸识别算法可以准确地提取人脸特征,通过大量的人脸数据集进行学习和训练,识别出不同人的面部特征并将其与身份信息关联。例如,在安全领域,人脸识别技术可以用于门禁系统,只有被授权的人员才能进入特定区域;在金融领域,可用于远程身份验证,提高交易的安全性。

“AI 歌手” 的出现也离不开机器学习。“AI 歌手” 本质上是人工智能语音克隆或语音合成,利用复杂的机器学习算法来重现特定的人声。通过采集大量高品质的演唱歌曲素材,然后利用机器学习和深度神经网络等技术对这些素材进行分析,提炼出包含歌手声音和演唱风格特征的具体模型,从而实现 “AI 歌手” 翻唱歌曲并公开传播的效果。

(二)对物理学研究的影响

机器学习为物理学研究带来了诸多帮助。在分析实验数据方面,机器学习技术可以帮助科研人员从复杂的实验数据中提取有用的信息和模式,揭示出物理系统的规律和特性。例如,通过机器学习算法,可以进行数据分类、聚类和降维等操作,更好地理解和解释物理现象。

在创建物理模型方面,机器学习可以通过学习和训练大量的数据,建立物理系统的模型,从而实现对物理过程的模拟和预测。这种模型可以帮助科研人员预测物理系统的性质、行为和演化趋势,为物理实验提供指导和解释。例如,科学家使用机器学习模型加速理论物理研究,将理论物理学与机器学习模型结合起来,为理论物理提供更快的算法。同时,机器学习揭示量子系统的底层物理原理,助力物理学发现,通过使用机器学习对哈密顿量模型进行逆向工程,为实验的量子系统制定和验证近似模型。

(三)对 AI 技术创业的启示

以 AI for Science 为例,诺贝尔物理学奖对 AI 技术创业有着重要的启示。AI for Science 是指利用 AI 技术进行基础科学研究,以找出相关领域未被发现的科学规律,或解决处于瓶颈的科学难题。此次诺贝尔物理学奖的颁发,强调了机器学习在跨学科研究中的重要性,为 AI 技术创业提供了新的方向和思路。

例如,谷歌旗下的 DeepMind 曾发布多个针对基础科学研究的深度学习模型,包括专门设计用于从第一性原理计算原子和分子的能量的 FermiNet,以及用于 “电子密度映射到化学相互作用能量” 这一量子化学模拟中关键组成部分的 DM21 等等。另一家由微软孵化的量子技术公司 Sandbox AQ,则是利用人工智能和量子技术解决一些世界上最具挑战性的问题,例如加速药物开发、催化新一代医疗诊断设备的发展、提高网络安全性等等。

在国内,深势科技、天鹜科技等公司已经驶入赛道。深势科技的核心技术为分子模拟技术,目前已针对药企、材料商和科研机构实现了产品发布。天鹜科技的目标领域为 AI 蛋白质设计,利用人工智能来设计和优化蛋白质,以推动生物制造和健康科技的突破。

总之,诺贝尔物理学奖的颁发,为 AI 技术创业指明了方向,鼓励创业者在跨学科领域进行探索和创新,利用 AI 技术解决基础科学研究中的问题,为社会带来更多的价值。

ceb14631b0324995873c0274bed5f4d0.png

 

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东境物语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值