子树

有两个不同大小的二进制树: T1 有上百万的节点; T2 有好几百的节点。请设计一种算法,判定 T2 是否为 T1的子树。
 注意事项
若 T1 中存在从节点 n 开始的子树与 T2 相同,我们称 T2 是 T1 的子树。也就是说,如果在 T1 节点 n 处将树砍断,砍断的部分将与 T2 完全相同。
样例
下面的例子中 T2 是 T1 的子树:


       1                3
      / \              / 
T1 = 2   3      T2 =  4
        /
       4
下面的例子中 T2 不是 T1 的子树:


       1               3
      / \               \
T1 = 2   3       T2 =    4
        /

       4

/**
 * 有两个不同大小的二进制树: T1 有上百万的节点; T2 有好几百的节点。请设计一种算法,判定 T2 是否为 T1的子树。
 注意事项
若 T1 中存在从节点 n 开始的子树与 T2 相同,我们称 T2 是 T1 的子树。也就是说,如果在 T1 节点 n 处将树砍断,砍断的部分将与 T2 完全相同。
样例
下面的例子中 T2 是 T1 的子树:

       1                3
      / \              / 
T1 = 2   3      T2 =  4
        /
       4
下面的例子中 T2 不是 T1 的子树:

       1               3
      / \               \
T1 = 2   3       T2 =    4
        /
       4
 * 
 * @author Dell
 *
 */
public class Test245 {
  public static boolean isSubtree(TreeNode T1, TreeNode T2)
  {
	      if(T2==null)
	        return true;
	    boolean result=false;
	   if(T1!=null&&T2!=null)
	   {
		   if(T1.val==T2.val)
		   {
			   result=panduan(T1,T2);
		   }
		   if(!result)
			   result=isSubtree(T1.left,T2);
		   if(!result)
			   result=isSubtree(T1.right,T2);    
	   }
	  return result;
	  
  }
  public static boolean panduan(TreeNode T1, TreeNode T2)
  {
	  if(T2==null&&T1==null)
		  return true;
	   if(T2==null)
		   return false;
	   if(T1==null)
		   return false;
	    if(T1.val==T2.val) 
	    {
	    	return panduan(T1.left,T2.left)&&panduan(T1.right,T2.right);
	    }
	    else
	    	return false;
  }
	public static void main(String[] args) {
	      

	}

}






Splay删除子树是一种数据结构和算法中的操作,通常用于自平衡二叉搜索树(如AVL、红黑树或Treap)的变种——Splay Tree中。Splay Tree是一种动态查找树,其特点是每次访问后都会对节点进行旋转操作(splaying),使其最近被访问的节点处于根部。 当要删除一个节点时,在常规的二叉搜索树中,我们需要找到该节点并删除它,然后处理可能由删除引起的不平衡。在Splay Tree中,这个过程有所不同: 1. **查找子树**: 首先,我们在树中寻找指定的子树,这可以通过标准的查找算法实现,同时保持对父节点的更新。 2. **Splay节点**: 找到子树后,我们对包含目标节点的路径上的所有节点执行一系列旋转操作(可能是单旋转或双旋转),直到目标节点到达根部。这个过程确保了频繁访问的路径被高效地访问。 3. **删除目标节点**: 当目标节点处于根部时,删除操作变得相对简单。如果目标节点有两颗子树,则替换为其右孩子的最小值或左孩子的最大值(取决于树的类型)。如果只有一个子树,那么就直接删除。 4. **重新平衡** (可选): 取决于Splay Tree的具体实现,可能会有一个额外的步骤来确保整棵树的平衡,但这不是必须的,因为Splay已经尽可能地减少了不平衡的可能性。 Splay删除子树的时间复杂度通常是O(log n),n是树的大小,因为每个旋转操作最多改变一棵高度为h的树的高度至h+1。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值