判断最小生成树路径唯一
POJ-1679 The Unique MST (poj.org)
思路
kruskal先跑一遍记录路径 然后依次删掉每条边判断新最小生成树与远最小生成树是否相等
复杂度O(nmlogm) ,待学习新方法
#include<iostream>
#include<algorithm>
using namespace std;
//最小生成树是否唯一
long long read(){
long long ret=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-f;ch=getchar();}
while(ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
return ret*f;
}
int f[100001];
int n,m,num,t,sum;
int F(int x){
return x == f[x] ? x : f[x] = F(f[x]);
}
int vis[100001];
struct node{
int u,v,w;
}a[100001];
void init(int n){
for(int i = 1; i <= n; i++){
f[i] = i;
}
}
bool cmp(node a, node b){
return a.w < b.w;
}
int main(){
t = read();
while(t--){
n = read(); m = read();
num = 0;
sum = 0;
init(n);
for(int i = 1; i <= m; i++){
a[i].u = read();
a[i].v = read();
a[i].w = read();
}
sort(a + 1, a + 1 + m, cmp);
for(int i = 1; i <= m; i++){
int x = F(a[i].u);
int y = F(a[i].v);
if(x != y){
f[x] = y;
vis[++num] = i;
sum += a[i].w;
}
}
int flag = 0;
for(int i = 1; i <= num; i++){
init(n);
int sum2 = 0;
int num2 = 0;
for(int j = 1; j <= m; j++){
if(j == vis[i])continue;
int x = F(a[j].u);
int y = F(a[j].v);
if(x != y){
f[x] = y;
sum2 += a[j].w;
num2 ++;
}
if(num2 != num)continue;
if(sum2 == sum){
flag = 1;
break;
}
}
if(flag == 1)break;
}
if(flag == 1){
puts("Not Unique!");
}else {
cout << sum << endl;
}
}
return 0;
}
学到一种新方法
考虑最小生成树的唯一性。如果一条边 不在最小生成树的边集中,并且可以替换与其 权值相同、并且在最小生成树边集 的另一条边。那么,这个最小生成树就是不唯一的。
证明方法kruskal
对于已连接的边集E ,考虑下一条加入的边v,若存在另一条边v1,v1 > v || v1 < v时,v1都不可能是下一条加入的边。
所以只需要考虑当前边长度相同的边即可
由于使用了单调队列所以复杂度和kruskal相同
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
long long read(){
long long ret=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-f;ch=getchar();}
while(ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
return ret*f;
}
int n,m,t;
int f[100001];
struct node{
int u,v,w;
};
node a[100001];
int F(int x){
return x == f[x] ? x : f[x] = F(f[x]);
}
bool cmp(node a, node b){
return a.w < b.w;
}
int main(){
t = read();
while(t--){
n = read(); m = read();
for(int i = 1; i <= n; i++){
f[i] = i;
}
for(int i = 1; i <= m; i++){
a[i].u = read();
a[i].v = read();
a[i].w = read();
}
sort(a + 1, a + 1 + m, cmp);
int sum1 = 0, sum2 = 0, num = 0, flag = 0,tail = 0, ans = 0;
for(int i = 1; i <= m + 1; i++){
if(i > tail){//tail记录最后长度相同的边的指针
//sum2记录可以合并的长度相同的边数
//sum1记录实际最小生成树中连接的边数
//如果两个不相等说明有可以替换的边,则最小生成树不唯一
if(sum1 != sum2){
flag = 1;
break;
}
sum1 = 0;
sum2 = 0;
for(int j = i; j <= m + 1; j++){
if(a[j].w != a[i].w){
tail = j - 1;
break;
}
if(F(a[j].u) != F(a[j].v)){
sum2++;
}
}
}
if(i > m)break;
int x = F(a[i].u);
int y = F(a[i].v);
if(x != y && num != n-1){
f[x] = y;
num ++;
sum1++;
ans += a[i].w;
}
}
if(flag == 0){
printf("%d\n",ans);
}else{
printf("Not Unique!\n");
}
}
}