题目
给定一个二维的矩阵,包含 'X' 和 'O'(字母 O)。
找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。
示例:
X X X X
X O O X
X X O X
X O X X
运行你的函数后,矩阵变为:
X X X X
X X X X
X X X X
X O X X
被围绕的区间不会存在于边界上,换句话说,任何边界上的 'O' 都不会被填充为 'X'。 任何不在边界上,或不与边界上的 'O' 相连的 'O' 最终都会被填充为 'X'。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。
个人思考
记录这一题的原因,因为每次都是从节点开始进行深度搜索,排查满足条件;但是这一题由于设置了 与边界相邻则不排除的特点,感觉限制很多,在dfs中不知道怎么写限制条件。
因此特殊情况单独考虑思考。先对四条边界线上进行处理,对 ‘ O’节点进行单独处理,找到它和与它相邻的节点,设置为另一个标记 ‘#’; dfs结束后,对数组进行一次遍历,将 ‘O’ 改成‘ X’,将‘#’ 改回 ‘O’
public void solve(char[][] board) {
if(board.length == 0){
return;
}
int row = board.length;
int column = board[0].length;
// 对第一列和最后一列处理
for(int i=0; i<row; i++){
dfs(board,i,0);
dfs(board,i,column-1);
}
// 对第一行和最后一行处理
for(int i=1; i<column-1; i++){
dfs(board,0,i);
dfs(board,row-1,i);
}
for(int i=0; i<row; i++)
for(int j=0; j<column; j++){
if(board[i][j] == '#'){
board[i][j] = 'O';
}else if(board[i][j] == 'O'){
board[i][j] = 'X';
}
}
}
public void dfs(char[][] board,int i,int j){
// 这里 节点 != O 的含义。因为是从边界开始扫描,无非两种情况:
// 1. 边界上的O,和与之相邻的O,这种情况要设值
// 2. 为 X,不用处理,停止并回溯
if(i<0 || i>=row || j<0 ||j >=column || board[i][j]!='O'){
return;
}
board[i][j] = '#';
dfs(board,i+1,j);
dfs(board,i-1,j);
dfs(board,i,j+1);
dfs(board,i,j-1);
}
时间复杂度:时间复杂度:O(row×column),其中 row 和 column 分别为矩阵的行数和列数。深度优先搜索过程中,每一个点至多只会被标记一次。