不了解历史,就没有资格说未来。
计算机和互联网引发的科技革命,让信息的获取变得无比廉价,所有人都被包裹其中,无论是愿意还是不愿意,无论是有意还是无意,无论是主动还是被动。
有人觉得,这很糟糕,因为它让人们常常处于缺失自我的状态之中。就像被扔到太空中,漫无目的的漂浮,你想抓取,但无处借力。
有人觉得,这是巨大的进步,因为它让更多的人看到更大的空间。就像井底之蛙,突然跃出,看到了另一幅星辰大海。
其实,身处其中的我们每一个人,都感受到了这两种力量:有时候你惊叹于科技进步带给你无限的想象;有时候却苦于无法掌握其中的规律,看不到全局而茫然失措。对于人工智能,这种感觉更加明显。
没有选择让你失明,选择太多也会让你失明。
机器学习本身干的事,就是在数据大海中,寻找规律。这本质上是在替人类干这件事。人类历史长河中,也是一直在做这样一件事,所以,我们走的方向没有变化,但是方法不一样了。
对于人工智能,现在的状态,就好比是中世纪的其他科学分支。大家都觉得很重要,很有前途,因此都在尝试寻找那根主干,寻找未来的方向。
学习数学的历史,你会发现,总的来看,它就像是一条大河,每一个举足轻重的数学家其实都是一条支流,他们的某一个或者某几个贡献,可能汇入了主河道,这是我们能够看见的。其实更多的东西,教科书并不体现,因为他们没有规律性,或者随时间而干涸了。
但是,只保留教科书并不是明智选择,因为教科书更多的重视果,而忽略了因。只有历史,才能告诉我们更多的因,也只有这无数的因,才能激发我们创造更多更好的果。
通过历史,我们不仅可以知道这样走为什么行,更可以知道那样走为什么不行。
在上一篇博文【分清概念十分重要系列之--说说人工智能中的各种学习_龙城赤子的博客-CSDN博客】中,我们通过历史,梳理了人工智能的各种学习,这里,引用一篇文章【A Revised History of Deep Learning - Issue #1 | Revue】,来梳理梳理人工智能中的各种网络模型。
文章中从感知机模型出发,引出了神经网络模型。提到了其中的RNN(循环神经网络)、CNN(卷积神经网络)这些我们常见的模型构型。 因为RNN的记忆问题,提出了LSTM(长短期记忆)结构。之后的里程碑事件ILSVRC--基于ImageNet的挑战赛,深度学习大显神威。
这里要插一句,提到ImageNet就不能不提李飞飞。在斯坦福大学的课程中,李飞飞介绍图像识别的历史时(看,人家的第一课就是让你了解历史过程,关键里程碑),介绍的一个例子让我印象深刻:自从进化出类似眼睛的器官后,生物进化就被加速了。可见,看见对所有生物都意义重大。
ImageNet Challenge. Image taken from CS231n
好了,到目前,我们还只是在谈论识别。其实,现在大家已经彻底的打开了人工智能的想象大门。AI不仅可以看懂,听懂,读懂,还要有自己的意识,可以创造。写诗、写文章(不仅仅是写个标题)、创作音乐、绘画......这是本质上已经从识别跳跃到生成,从已有到创造。这就是生成网络的天地了。2014年,大牛Ian Goodfellow创建了GAN(生成对抗网络),这就是创新应该做的事。GAN由生成器和鉴别器构成,大名鼎鼎的Deepfake曾经给某些人带来了恐慌呢。GAN就像是周伯通的左右手互搏,也像是警察和罪犯的游戏,也像是上有政策,下有对策。总之,生成器要想办法欺骗鉴别器,鉴别器要想办法识别欺骗,在来回较量中,双方实力都得到提高。到一定程度,生成器的结果,对人类而言,似乎就......
图片来自:A Revised History of Deep Learning - Issue #1 | Revue
在这后,一种基于attention的模型流行起来,这称为Transformer,不再使用RNN和CNN。在NLP中,被用于机器翻译、生成摘要、语音识别等等。
自2018之后,各个方面都在飞速前进。借鉴和学习,更大的模型,更强大的算力,更多的参数...似乎进入了结果为王的周期。
未来,时间会告诉。