相对熵——KL散度

相对熵——KL散度

相对熵又被成为KL散度,或信息散度,用来度量两个概率分布间的非对称性差异,在信息论中KL相对熵等于两个概率分布的信息熵的差值。

相对熵的公式

P ( x ) 、 Q ( x ) P(x)、Q(x) P(x)Q(x)是离散随机变量 X X X中取值 x x x的两个概率分布函数,它们的结果分别为 p p p q q q,则 p p p q q q的相对熵如下:
D K L = ∑ x ∈ X P ( x ) l o g P ( x ) Q ( x ) = E p [ l o g d P ( x ) d Q ( x ) ] D_{KL} = \sum_{x\in X}^{}P(x)log\frac{P(x)}{Q(x)}=E_p\left [ log\frac{dP(x)}{dQ(x)} \right ] DKL=xXP(x)logQ(x)P(x)=Ep[logdQ(x)dP(x)]
由该式可知当两个分布相同时,相对熵为0并且相对熵具有不对称性。

相对熵与交叉熵之间的关系

将上式中的对数部分展开,可以看到相对熵与绝对熵之间的关系:
D K L ( p ∣ ∣ q ) = ∑ x ∈ X P ( x ) l o g P ( x ) + ∑ x ∈ X P ( x ) l o g 1 Q ( x ) = − H ( p ) + H c r o s s ( p , q ) = H c r o s s ( p , q ) − H ( p ) D_{KL}(p||q)=\sum_{x \in X}^{}P(x)logP(x) + \sum_{x \in X}^{}P(x)log\frac{1}{Q(x)} \newline =-H(p)+H_{cross}(p, q)\newline =H_{cross}(p,q)-H(p) DKL(p∣∣q)=xXP(x)logP(x)+xXP(x)logQ(x)1=H(p)+Hcross(p,q)=Hcross(p,q)H(p)
相对熵是交叉熵中去掉熵的部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WhenXuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值