相对熵——KL散度

相对熵——KL散度

相对熵又被成为KL散度,或信息散度,用来度量两个概率分布间的非对称性差异,在信息论中KL相对熵等于两个概率分布的信息熵的差值。

相对熵的公式

P ( x ) 、 Q ( x ) P(x)、Q(x) P(x)Q(x)是离散随机变量 X X X中取值 x x x的两个概率分布函数,它们的结果分别为 p p p q q q,则 p p p q q q的相对熵如下:
D K L = ∑ x ∈ X P ( x ) l o g P ( x ) Q ( x ) = E p [ l o g d P ( x ) d Q ( x ) ] D_{KL} = \sum_{x\in X}^{}P(x)log\frac{P(x)}{Q(x)}=E_p\left [ log\frac{dP(x)}{dQ(x)} \right ] DKL=xXP(x)logQ(x)P(x)=Ep[logdQ(x)dP(x)]
由该式可知当两个分布相同时,相对熵为0并且相对熵具有不对称性。

相对熵与交叉熵之间的关系

将上式中的对数部分展开,可以看到相对熵与绝对熵之间的关系:
D K L ( p ∣ ∣ q ) = ∑ x ∈ X P ( x ) l o g P ( x ) + ∑ x ∈ X P ( x ) l o g 1 Q ( x ) = − H ( p ) + H c r o s s ( p , q ) = H c r o s s ( p , q ) − H ( p ) D_{KL}(p||q)=\sum_{x \in X}^{}P(x)logP(x) + \sum_{x \in X}^{}P(x)log\frac{1}{Q(x)} \newline =-H(p)+H_{cross}(p, q)\newline =H_{cross}(p,q)-H(p) DKL(p∣∣q)=xXP(x)logP(x)+xXP(x)logQ(x)1=H(p)+Hcross(p,q)=Hcross(p,q)H(p)
相对熵是交叉熵中去掉熵的部分。

### KL的概念 KL,全称为Kullback-Leibler Divergence,是一种量化两种概率分布\( P \)和\( Q \)之间差异的方式[^4]。它也被称作相对熵(Relative Entropy),用于衡量当用一个概率分布\( Q \)来表示真实的概率分布\( P \)时所需的额外信息量[^3]。 ### 计算方法 对于离型随机变量,假设存在两个概率质量函数\( p(x) \)和\( q(x) \),那么KL可由下述公式给出: \[ D_{KL}(P||Q)=\sum_x{p(x)\log{\frac{p(x)}{q(x)}}} \] 而对于连续型随机变量,则通过积分形式表达: \[ D_{KL}(P||Q)=\int{-p(x)\log{\frac{q(x)}{p(x)}}dx} \] 值得注意的是,KL不是对称的,即\( D_{KL}(P||Q) \neq D_{KL}(Q||P) \)[^1]。 ```python import numpy as np from scipy.stats import entropy def calculate_kl_divergence(p, q): """Calculate the Kullback-Leibler divergence between two discrete distributions.""" return entropy(p, q) # Example usage with two simple probability distributions. distribution_p = [0.2, 0.5, 0.3] distribution_q = [0.4, 0.4, 0.2] kl_divergence_value = calculate_kl_divergence(distribution_p, distribution_q) print(f"The calculated KL-Divergence is {kl_divergence_value}") ``` ### 应用场景 在机器学习中,KL被广泛应用于评估模型预测的概率分布与实际数据的真实分布间的差距,从而辅助于模型的选择和调优工作。比如,在聚类算法里,可以通过比较各簇内样本点对应的概率分布之间的KL来进行效果评价;另外,在变分自编码器(VAEs)等生成对抗网络(GANs)架构下的训练过程中也会涉及到KL的应用[^2]。 ### 信息论视角 从信息论的角来看,如果试图利用某个次优的概率分布去压缩原始的数据流,将会引入冗余——这部分多余的比特数正好对应着两者间KL大小的表现形式之一。 ### 统计学意义 统计学家们经常采用简化版或是近似版本的概率密函数代替那些难以处理的实际观测到的数据集上的复杂分布模式。此时,KL提供了一种有效手段用来测量因这种替换而产生的信息丢失程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WhenXuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值