机器学习基础——香农熵、相对熵(KL散度)与交叉熵

本文介绍了信息熵、相对熵(K-L散度)和交叉熵的基本概念。信息熵衡量了系统的无序化程度,相对熵用于比较两个概率分布的差异,交叉熵则在机器学习中评估模型预测概率分布与真实分布的差异。通过吉布斯不等式,证明了相对熵非负且不具对称性。在编码角度,信息熵表示最短平均编码长度,交叉熵则表示非最优编码方案的平均长度。
摘要由CSDN通过智能技术生成

1. 香农熵(Shannon entropy)

信息熵(又叫香农熵)反映了一个系统的无序化(有序化)程度,一个系统越有序,信息熵就越低,反之就越高。

如果一个随机变量 X 的可能取值为 X={x1,x2,…,xn},对应的概率为 p(X=xi),则随机变量 X 的信息熵为:


H(X)=?∑i=1np(xi)logp(xi)


2. 相对熵(relative entropy)

所谓相对,自然在两个随机变量之间。又称互熵,Kullback–Leibler divergence(K-L 散度)等。设 p(x) 和 q(x) 是 X 取值的两个概率分布,则 p 对 q的相对熵为: 

D(p||q)=∑i=1np(x)logp(x)q(x)

在一定程度上,熵可以度量两个随机变量的距离。KL 散度是两个概率分布 P 和 Q 差别的非对称性的度量。KL 散度是用来度量使用基于 Q 的编码来编码来自 P 的样本平均所需的额外的位元数。


典型情况下,P 表示数据的真实分布,Q 表示数据的理论分布,模型分布,或 P 的近似分布。

相对熵的性质,相对熵(KL散度)有两个主要的性质。如下

  • (1)尽管 KL 散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即


D(p||q)≠D(q||p)


  • (2)相对熵的值为非负值,即


    D(p||q)≥0


在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式。内容如下



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值