机器学习_吴恩达_week2(多变量线性回归)

目录

一、多变量线性回归

1.1 多维特征

1.2 梯度下降在多维特征中应用

1.3 梯度下降实践1:特征缩放

1.4 梯度下降实践2:学习率

1.5 多特征和多项式回归

1.6 正规方程

1.7 正规方程及不可逆性(选修)

二、octave与Matlab介绍及安装

三、Octave/Matlab教程


一、多变量线性回归

1.1 多维特征

一句话总结:
多变量线性回归的模型函数是:
{\color{Red} h_{\theta}(x)=\theta^{T} x=\theta_{0} x_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{n} x_{n} }其中{\color{Red} x_0} = 1

1.2 梯度下降在多维特征中应用

一句话总结:
多变量线性回归的梯度下降是:
repeat {
        {\color{Red} \theta_{j} :=\theta_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}}
        ({\color{Red} \theta_j}要同时更新,j = 0,1,...,n)
}

1.3 梯度下降实践1:特征缩放(特征归一化)

在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。


上面是通过“特征值/特征最大值”的办法进行特征缩放的,下面是另外一种方法:

一句话总结:
特征缩放的目的:把特征值约束在[-1, 1]这个区间范围附近,有利于梯度下降更快的收敛。
一般用(特征值 - 平均值) / (max - min),或者(特征值 - 平均值) / 标准差

1.4 梯度下降实践2:学习率


本节将讨论两个问题:

  • 如何判断梯度下降正常工作了?
  • 如何选择学习率\alpha


判断梯度下降正常工作,一般有两种办法:
一是:画图法。见上图左侧,横坐标迭代次数,纵坐标是代价函数,随着迭代进行,代价函数越来越小,说明梯度下降算法运行正确。
二是:可以当代价函数<0.001时,认为收敛了
第一种画图法更好更直观。

下面讨论如何选择学习率\alpha

上图中,左侧的两个代价函数图,都是不正确的,正确的是越来越低。出现的原因是\alpha选大了
数学家证明过,当\alpha相当小时,J(\theta)随着迭代越来越小的。但是如果太小,收敛慢。


一般是按3的倍数取,找一个最小的可能值,再找一个最大的可能值,然后在这个范围内找一个最大可能合适值。

1.5 多特征和多项式回归

todo

1.6 正规方程

todo

1.7 正规方程及不可逆性(选修)

todo

二、octave与Matlab介绍及安装

三、Octave/Matlab教程

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值