目录
一、多变量线性回归
1.1 多维特征
一句话总结:
多变量线性回归的模型函数是:,其中 = 1
1.2 梯度下降在多维特征中应用
一句话总结:
多变量线性回归的梯度下降是:
repeat {
(要同时更新,j = 0,1,...,n)
}
1.3 梯度下降实践1:特征缩放(特征归一化)
在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。
上面是通过“特征值/特征最大值”的办法进行特征缩放的,下面是另外一种方法:
一句话总结:
特征缩放的目的:把特征值约束在[-1, 1]这个区间范围附近,有利于梯度下降更快的收敛。
一般用(特征值 - 平均值) / (max - min),或者(特征值 - 平均值) / 标准差
1.4 梯度下降实践2:学习率
本节将讨论两个问题:
- 如何判断梯度下降正常工作了?
- 如何选择学习率
判断梯度下降正常工作,一般有两种办法:
一是:画图法。见上图左侧,横坐标迭代次数,纵坐标是代价函数,随着迭代进行,代价函数越来越小,说明梯度下降算法运行正确。
二是:可以当代价函数<0.001时,认为收敛了
第一种画图法更好更直观。
下面讨论如何选择学习率:
上图中,左侧的两个代价函数图,都是不正确的,正确的是越来越低。出现的原因是选大了
数学家证明过,当相当小时,随着迭代越来越小的。但是如果太小,收敛慢。
一般是按3的倍数取,找一个最小的可能值,再找一个最大的可能值,然后在这个范围内找一个最大可能合适值。
1.5 多特征和多项式回归
todo
1.6 正规方程
todo
1.7 正规方程及不可逆性(选修)
todo
二、octave与Matlab介绍及安装
略
三、Octave/Matlab教程
略