布线问题
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少
-
输入
-
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
- 每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。 样例输入
-
1 4 6 1 2 10 2 3 10 3 1 10 1 4 1 2 4 1 3 4 1 1 3 5 6
样例输出
-
4
解题思路:最小生成树,prim算法就可以求出
代码如下:
# include<stdio.h>
# include<string.h>
# include<algorithm>
using namespace std;
int a[505][505],v[505],h[505],b[505];
int n,m;
int Prim(int k)
{ memset(v,0,sizeof(v));
v[k]=1;
for(int i=1;i<=n;i++)
b[i]=a[k][i];
b[k]=0;
int sum=0,l;
for(int i=1;i<n;i++)
{
int max=0x3f3f;
for(int j=1;j<=n;j++)
{
if(!v[j]&&b[j]<max) //求当前最短路径
{
l=j;
max=b[j];
}
}
sum+=b[l]; //求出当前最短路径后加在一起
v[l]=1;
for(int j=1;j<=n;j++)
{
if(!v[j]&&b[j]>a[l][j])
b[j]=a[l][j];
}
}
return sum;
}
int main(){
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
int c1,c2,c3;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=0x3f3f;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&c1,&c2,&c3);
a[c1][c2]=a[c2][c1]=c3;
}
for(int i=0;i<n;i++)
scanf("%d",&h[i]);
sort(h,h+n);
int k=h[0]+Prim(1);
printf("%d\n",k);
}
return 0;
}