浅谈斐波那契数列通项公式的推导

本文介绍了斐波那契数列的状态转移方程及其矩阵表示,通过矩阵对角化找到了特征值和特征向量,进而推导出通项公式,展示了如何利用线性代数工具简化计算过程。
摘要由CSDN通过智能技术生成

1. 更简单的状态转移方程

我们知道,斐波那契数列的状态转移方程为:

F i b ( n ) = F i b ( n − 1 ) + F i b ( n − 2 ) Fib(n) = Fib(n-1) + Fib(n-2) Fib(n)=Fib(n1)+Fib(n2)

其中, F i b ( n ) Fib(n) Fib(n)表示第 n n n个斐波那契数。
但是这个状态转移方程是由前2个状态推导的,为了从前1个状态推导,应该把两个斐波那契数列错位排列:

{Fib11}: 1 1 2 3 5 8  13 21 34 55 ...
{Fib12}: 1 2 3 5 8 13 21 34 55 89 ...

这样,我们可以得到:

F i b 11 ( n ) = F i b 12 ( n − 1 ) F i b 12 ( n ) = F i b 11 ( n ) + F i b 11 ( n − 1 ) = F i b 12 ( n − 1 ) + F i b 11 ( n − 1 ) \quad Fib_{11}(n) = Fib_{12}(n-1) \\ \quad Fib_{12}(n) = Fib_{11}(n) + Fib_{11}(n-1) = Fib_{12}(n-1) + Fib_{11}(n-1) Fib11(n)=Fib12(n1)Fib12(n)=Fib11(n)+Fib11(n1)=Fib12(n1)+Fib11(n1)

这个状态转移方程就可以直接由上一个状态推导出来,而不需要前两个状态。

2. 状态转移方程的矩阵形式

我们可以把状态转移方程写成矩阵形式:

[ F i b ( n ) F i b ( n − 1 ) ] = [ 1 1 1 0 ] [ F i b ( n − 1 ) F i b ( n − 2 ) ] \begin{bmatrix} Fib(n) \\ Fib(n-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} Fib(n-1) \\ Fib(n-2) \end{bmatrix} [Fib(n)Fib(n1)]=[1110][Fib(n1)Fib(n2)]

令:

A = [ 1 1 1 0 ] f 1 = [ 1 1 ] \quad A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \mathbf{f_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} A=[1110]f1=[11]

则:

[ F i b ( n ) F i b ( n − 1 ) ] = A n − 1 f 1 \begin{bmatrix} Fib(n) \\ Fib(n-1) \end{bmatrix} = A^{n-1} \mathbf{f_1} [Fib(n)Fib(n1)]=An1f1

很容易发现:

f 1 = A [ 1 0 ] \mathbf{f_1} = A \begin{bmatrix} 1 \\ 0 \end{bmatrix} f1=A[10]

所以:

f 0 = [ 1 0 ] f n = [ F i b ( n ) F i b ( n − 1 ) ] = A n f 0 \quad \mathbf{f_0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ \quad \mathbf{f_n} = \begin{bmatrix} Fib(n) \\ Fib(n-1) \end{bmatrix} = A^n \mathbf{f_0} f0=[10]fn=[Fib(n)Fib(n1)]=Anf0

3. 矩阵的对角化

现在需要把矩阵 A A A对角化,即找到一个矩阵 P P P,使得:

P − 1 A P = [ λ 1 0 0 λ 2 ] = Λ P^{-1} A P = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \Lambda P1AP=[λ100λ2]=Λ

则:

A n = P Λ n P − 1 A^n = P \Lambda^n P^{-1} An=PΛnP1

3.1 特征值和特征向量

令:

∣ A − λ I ∣ = 0 \left | A - \lambda I \right | = 0 AλI=0

解得:

λ 1 = 1 + 5 2 , λ 2 = 1 − 5 2 Λ = [ λ 1 0 0 λ 2 ] \lambda_1 = \frac{1 + \sqrt{5}}{2} , \quad \lambda_2 = \frac{1 - \sqrt{5}}{2} \\ \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} λ1=21+5 ,λ2=215 Λ=[λ100λ2]

对于 A x 1 = λ 1 x 1 , A x 2 = λ 2 x 2 A \mathbf{x_1} = \lambda_1 \mathbf{x_1}, \quad A \mathbf{x_2} = \lambda_2 \mathbf{x_2} Ax1=λ1x1,Ax2=λ2x2,解得:

x 1 = [ 1 + 5 2 1 ] , x 2 = [ 1 − 5 2 1 ] P = [ 1 + 5 2 1 − 5 2 1 1 ] P − 1 = 1 5 [ 1 − 1 − 5 2 − 1 1 + 5 2 ] \mathbf{x_1} = \begin{bmatrix} \frac{1 + \sqrt{5}}{2} \\ 1 \end{bmatrix} , \quad \mathbf{x_2} = \begin{bmatrix} \frac{1 - \sqrt{5}}{2} \\ 1 \end{bmatrix} \\ \quad P = \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & \frac{1 - \sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \\ \quad P^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -\frac{1 - \sqrt{5}}{2} \\ -1 & \frac{1 + \sqrt{5}}{2} \end{bmatrix} x1=[21+5 1],x2=[215 1]P=[21+5 1215 1]P1=5 1[11215 21+5 ]

3.2 矩阵的对角化

A n = P Λ n P − 1 = 1 5 [ 1 + 5 2 1 − 5 2 1 1 ] [ ( 1 + 5 2 ) n 0 0 ( 1 − 5 2 ) n ] [ 1 − 1 − 5 2 − 1 1 + 5 2 ] A^n = P \Lambda^n P^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & \frac{1 - \sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \left( \frac{1 + \sqrt{5}}{2} \right)^n & 0 \\ 0 & \left( \frac{1 - \sqrt{5}}{2} \right)^n \end{bmatrix} \begin{bmatrix} 1 & -\frac{1 - \sqrt{5}}{2} \\ -1 & \frac{1 + \sqrt{5}}{2} \end{bmatrix} An=PΛnP1=5 1[21+5 1215 1] (21+5 )n00(215 )n [11215 21+5 ]

4. 通项公式的推导

[ F i b ( n ) F i b ( n − 1 ) ] = A n f 0 = 1 5 [ 1 + 5 2 1 − 5 2 1 1 ] [ ( 1 + 5 2 ) n 0 0 ( 1 − 5 2 ) n ] [ 1 − 1 − 5 2 − 1 1 + 5 2 ] [ 1 0 ] \begin{bmatrix} Fib(n) \\ Fib(n-1) \end{bmatrix} = A^{n} \mathbf{f_0} = \frac{1}{\sqrt{5}} \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & \frac{1 - \sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \left( \frac{1 + \sqrt{5}}{2} \right)^n & 0 \\ 0 & \left( \frac{1 - \sqrt{5}}{2} \right)^n \end{bmatrix} \begin{bmatrix} 1 & -\frac{1 - \sqrt{5}}{2} \\ -1 & \frac{1 + \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} [Fib(n)Fib(n1)]=Anf0=5 1[21+5 1215 1] (21+5 )n00(215 )n [11215 21+5 ][10]

化简得:

F i b ( n ) = 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) Fib(n) = \frac{1}{\sqrt{5}} \left( \left( \frac{1 + \sqrt{5}}{2} \right)^{n} - \left( \frac{1 - \sqrt{5}}{2} \right)^{n} \right) Fib(n)=5 1((21+5 )n(215 )n)

  • 28
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值