多进程、多线程、协程

快速理解多进程与多线程以及协程的使用场合和特点

 

首先我们来了解下python中的进程,线程以及协程!

从计算机硬件角度:

计算机的核心是CPU,承担了所有的计算任务。
一个CPU,在一个时间切片里只能运行一个程序。

 

从操作系统的角度:

进程和线程,都是一种CPU的执行单元。

进程:表示一个程序的上下文执行活动(打开、执行、保存...)

线程:进程执行程序时候的最小调度单位(执行a,执行b...)

一个程序至少有一个进程,一个进程至少有一个线程。

 

并行 和 并发:


并行:多个CPU核心,不同的程序就分配给不同的CPU来运行。可以让多个程序同时执行。

cpu1 -------------
cpu2 -------------
cpu3 -------------
cpu4 -------------

并发:单个CPU核心,在一个时间切片里一次只能运行一个程序,如果需要运行多个程序,则串行执行。

cpu1  ----  ----

cpu1    ----  ----

 


多进程/多线程:
表示可以同时执行多个任务,进程和线程的调度是由操作系统自动完成。


进程:每个进程都有自己独立的内存空间,不同进程之间的内存空间不共享。
进程之间的通信有操作系统传递,导致通讯效率低,切换开销大。

线程:一个进程可以有多个线程,所有线程共享进程的内存空间,通讯效率高,切换开销小。

共享意味着竞争,导致数据不安全,为了保护内存空间的数据安全,引入"互斥锁"。

一个线程在访问内存空间的时候,其他线程不允许访问,必须等待之前的线程访问结束,才能使用这个内存空间。

互斥锁:一种安全有序的让多个线程访问内存空间的机制。

 

Python的多线程:

GIL 全局解释器锁:线程的执行权限,在Python的进程里只有一个GIL。

一个线程需要执行任务,必须获取GIL。

好处:直接杜绝了多个线程访问内存空间的安全问题。
坏处:Python的多线程不是真正多线程,不能充分利用多核CPU的资源。

但是,在I/O阻塞的时候,解释器会释放GIL。


所以:

多进程:密集CPU任务,需要充分使用多核CPU资源(服务器,大量的并行计算)的时候,用多进程。 multiprocessing
缺陷:多个进程之间通信成本高,切换开销大。


多线程:密集I/O任务(网络I/O,磁盘I/O,数据库I/O)使用多线程合适。
threading.Thread、multiprocessing.dummy
缺陷:同一个时间切片只能运行一个线程,不能做到高并行,但是可以做到高并发。


协程:又称微线程,在单线程上执行多个任务,用函数切换,开销极小。不通过操作系统调度,没有进程、线程的切换开销。genvent,monkey.patchall

多线程请求返回是无序的,那个线程有数据返回就处理那个线程,而协程返回的数据是有序的。

缺陷:单线程执行,处理密集CPU和本地磁盘IO的时候,性能较低。处理网络I/O性能还是比较高.

 

 

 

下面以这个网站为例,采用三种方式爬取。爬取前250名的电影。。

https://movie.douban.com/top250?start=0

 通过分析网页发现第2页的url start=25,第3页的url start=50,第3页的start=75。因此可以得出这个网站每一页的数局是通过递增start这个参数获取的。

一般不看第一页的数据,第一页的没有参考价值。

 

这次我们主要爬取,电影名字跟评分。只是使用不同方式去对比下不同点,所以数据方面就不过多提取或者保存。只是简单的将其爬取下打印出来看看。

第一:采用多进程 , multiprocessing 模块。 当然这个耗时更网络好坏有关。在全部要请求都正常的情况下耗时15s多。

 

 Process多进程实现

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

#!/usr/bin/env python2

# -*- coding=utf-8 -*-

 

from multiprocessing import Process, Queue

 

import time

from lxml import etree

import requests

 

 

class DouBanSpider(Process):

    def __init__(self, url, q):

        # 重写写父类的__init__方法

        super(DouBanSpider, self).__init__()

        self.url = url

        self.q = q

        self.headers = {

            'Host''movie.douban.com',

            'Referer''https://movie.douban.com/top250?start=225&filter=',

            'User-Agent''Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36',

        }

 

    def run(self):

        self.parse_page()

 

    def send_request(self,url):

        '''

        用来发送请求的方法

        :return: 返回网页源码

        '''

        # 请求出错时,重复请求3次,

        = 0

        while i <= 3:

            try:

                print u"[INFO]请求url:"+url

                return requests.get(url=url,headers=self.headers).content

            except Exception as e:

                print u'[INFO] %s%s'% (e,url)

                += 1

 

    def parse_page(self):

        '''

        解析网站源码,并采用xpath提取 电影名称和平分放到队列中

        :return:

        '''

        response = self.send_request(self.url)

        html = etree.HTML(response)

        # 获取到一页的电影数据

        node_list = html.xpath("//div[@class='info']")

        for move in node_list:

            # 电影名称

            title = move.xpath('.//a/span/text()')[0]

            # 评分

            score = move.xpath('.//div[@class="bd"]//span[@class="rating_num"]/text()')[0]

            

            # 将每一部电影的名称跟评分加入到队列

            self.q.put(score + "\t" + title)

 

 

def main():

    # 创建一个队列用来保存进程获取到的数据

    = Queue()

    base_url = 'https://movie.douban.com/top250?start='

    # 构造所有url

    url_list = [base_url+str(num) for num in range(0,225+1,25)]

 

    # 保存进程

    Process_list = []

    # 创建并启动进程

    for url in url_list:

        = DouBanSpider(url,q)

        p.start()

        Process_list.append(p)

     

    # 让主进程等待子进程执行完成

    for in Process_list:

        i.join()

 

    while not q.empty():

        print q.get()

 

if __name__=="__main__":

     

    start = time.time()

    main()

    print '[info]耗时:%s'%(time.time()-start)

  

 

 

 

  采用多线程时,耗时10.4s

 

 thread

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

#!/usr/bin/env python2

# -*- coding=utf-8 -*-

 

from threading import Thread

from Queue import Queue

import time

from lxml import etree

import requests

 

 

class DouBanSpider(Thread):

    def __init__(self, url, q):

        # 重写写父类的__init__方法

        super(DouBanSpider, self).__init__()

        self.url = url

        self.q = q

        self.headers = {

            'Cookie''ll="118282"; bid=ctyiEarSLfw; ps=y; __yadk_uid=0Sr85yZ9d4bEeLKhv4w3695OFOPoedzC; dbcl2="155150959:OEu4dds1G1o"; as="https://sec.douban.com/b?r=https%3A%2F%2Fbook.douban.com%2F"; ck=fTrQ; _pk_id.100001.4cf6=c86baf05e448fb8d.1506160776.3.1507290432.1507283501.; _pk_ses.100001.4cf6=*; __utma=30149280.1633528206.1506160772.1507283346.1507290433.3; __utmb=30149280.0.10.1507290433; __utmc=30149280; __utmz=30149280.1506160772.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utma=223695111.1475767059.1506160772.1507283346.1507290433.3; __utmb=223695111.0.10.1507290433; __utmc=223695111; __utmz=223695111.1506160772.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); push_noty_num=0; push_doumail_num=0',

            'Host''movie.douban.com',

            'Referer''https://movie.douban.com/top250?start=225&filter=',

            'User-Agent''Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36',

        }

 

    def run(self):

        self.parse_page()

 

    def send_request(self,url):

        '''

        用来发送请求的方法

        :return: 返回网页源码

        '''

        # 请求出错时,重复请求3次,

        = 0

        while i <= 3:

            try:

                print u"[INFO]请求url:"+url

                html = requests.get(url=url,headers=self.headers).content

            except Exception as e:

                print u'[INFO] %s%s'% (e,url)

                += 1

            else:

                return html

 

    def parse_page(self):

        '''

        解析网站源码,并采用xpath提取 电影名称和平分放到队列中

        :return:

        '''

        response = self.send_request(self.url)

        html = etree.HTML(response)

        # 获取到一页的电影数据

        node_list = html.xpath("//div[@class='info']")

        for move in node_list:

            # 电影名称

            title = move.xpath('.//a/span/text()')[0]

            # 评分

            score = move.xpath('.//div[@class="bd"]//span[@class="rating_num"]/text()')[0]

 

            # 将每一部电影的名称跟评分加入到队列

            self.q.put(score + "\t" + title)

 

 

def main():

    # 创建一个队列用来保存进程获取到的数据

    = Queue()

    base_url = 'https://movie.douban.com/top250?start='

    # 构造所有url

    url_list = [base_url+str(num) for num in range(0,225+1,25)]

 

    # 保存线程

    Thread_list = []

    # 创建并启动线程

    for url in url_list:

        = DouBanSpider(url,q)

        p.start()

        Thread_list.append(p)

 

    # 让主线程等待子线程执行完成

    for in Thread_list:

        i.join()

 

    while not q.empty():

        print q.get()

 

if __name__=="__main__":

 

    start = time.time()

    main()

    print '[info]耗时:%s'%(time.time()-start)

  

 

 

 

采用协程爬取,耗时15S,

 gevent

 

 

 

 

用了多进程,多线程,协程,实现的代码都一样,没有测试出明显的那个好!都不分上下,可能跟网络,或者服务器配置有关。

但理论上来说线程,协程在I/O密集的操作性能是要高于进程的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值