代码随想录算法训练营第18天|513.找树左下角的值、112. 路径总和113.路径总和ii、106.从中序与后序遍历序列构造二叉树105.从前序与中序遍历序列构造二叉树

513.找树左下角的值

题目链接:513.找树左下角的值
文章讲解:代码随想录|513.找树左下角的值
视频讲解:怎么找二叉树的左下角? 递归中又带回溯了,怎么办?| LeetCode:513.找二叉树左下角的值

思路

递归法

遍历每个节点,比较每个叶子节点的深度,找到深度最大的叶子节点。又因为不管是什么顺序的遍历,左节点都比右节点先遍历到,所以记录下最深的第一个节点值即可

迭代法

层序遍历,用队列实现,记录每一层的第一个元素,最后存着的就是最后一层的最左边元素

代码

递归法

class Solution {
public:
    int maxDepth = INT_MIN;
    int result;
    void traversal(TreeNode* root, int depth) {
        if (root->left == NULL && root->right == NULL) {
            if (depth > maxDepth) {
                maxDepth = depth;
                result = root->val;
            }
            return;
        }
        if (root->left) {
            depth++;
            traversal(root->left, depth);
            depth--; // 回溯
        }
        if (root->right) {
            depth++;
            traversal(root->right, depth);
            depth--; // 回溯
        }
        return;
    }
    int findBottomLeftValue(TreeNode* root) {
        traversal(root, 0);
        return result;
    }
};

迭代法

class Solution {
public:
    int findBottomLeftValue(TreeNode* root) {
        int result = 0;
        queue<TreeNode*> que;
        if(root)que.push(root);
        while(!que.empty()){
            int size = que.size();
            for(int i = 0; i < size; i++){ 
                if(i == 0) result = que.front()->val;  
                TreeNode* node = que.front();
                que.pop();
                if(node->left) que.push(node->left);
                if(node->right) que.push(node->right);
            }
        }
        return result;
    }
};

112. 路径总和

题目链接:112. 路径总和
文章讲解:代码随想录|112. 路径总和
视频讲解:112. 路径总和

思路

使用深度优先遍历
在这里插入图片描述

代码

class Solution {
public:
    bool traversal(TreeNode* cur, int targetSum, int sum){
        if(cur->left == nullptr && cur->right == nullptr && sum == targetSum) return true;
        if(cur->left == nullptr && cur->right == nullptr && sum != targetSum) return false;
        if(cur->left){
            sum += cur->left->val;
            if(traversal(cur->left, targetSum, sum)) return true;
            sum -= cur->left->val;
        }
        if(cur->right){
            sum += cur->right->val;
            if(traversal(cur->right, targetSum, sum)) return true;
            sum -= cur->right->val;
        }
        return false;
    }
    bool hasPathSum(TreeNode* root, int targetSum) {
        if(root == nullptr) return false;
        return traversal(root, targetSum, root->val); // sum是加上cur之后的sum,所以这边是root->val
    }
};

113. 路径总和ii

题目链接:113. 路径总和ii
文章讲解:代码随想录|113. 路径总和ii

思路

本题是需要访问所有节点,所以递归函数的返回值不能是bool,如果是bool的话会只返回一条路径:
当返回值是bool时:if(traversal(cur->right, targetSum, sum)) return true;如果递归函数返回了第一个true,就会一路返回true到根节点然后结束递归。
当没有返回值时:traversal(cur->left, sum, targetSum);就是遍历整棵树,且不需要处理递归返回值

代码

class Solution {
    vector<vector<int>> result;
    vector<int> path;
    void traversal(TreeNode* cur, int sum, int targetSum){
        if(!cur->left && !cur->right && sum == targetSum){
            result.push_back(path);
            return;
        }
        if(!cur->left && !cur->right) return;
        if(cur->left){
            sum += cur->left->val;
            path.push_back(cur->left->val);
            traversal(cur->left, sum, targetSum);
            sum -= cur->left->val;
            path.pop_back();
        }
        if(cur->right){
            sum += cur->right->val;
            path.push_back(cur->right->val);
            traversal(cur->right, sum, targetSum);
            sum -= cur->right->val;
            path.pop_back();
        }
        return;
    }


public:
    vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
        if(!root) return result;
        path.push_back(root->val);
        traversal(root, root->val, targetSum);
        return result;
    }
};

106.从中序与后序遍历序列构造二叉树

题目链接:106.从中序与后序遍历序列构造二叉树
文章讲解:代码随想录|106.从中序与后序遍历序列构造二叉树
视频讲解:106.从中序与后序遍历序列构造二叉树

思路

请添加图片描述
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]

不论那种遍历方式,都有个共同特点:是一个子树的元素是在一块的
后序遍历的特点是每个子树的根节点是这块元素的最后一个
中序遍历的特点是每个子树的根节点在该子树的两个子树之间
因此我们可以先通过后序遍历找到某个子树的根节点,然后用这个根节点在中序遍历中区分该子树的两个子树,然后递归找这两个子树的子树……
请添加图片描述
第一步:如果数组大小为零的话,说明是空节点了。

第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

第五步:切割后序数组,切成后序左数组和后序右数组

第六步:递归处理左区间和右区间

代码

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;

        // 后序遍历数组最后一个元素,就是当前的中间节点
        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);

        // 叶子节点
        if (postorder.size() == 1) return root;

        // 找到中序遍历的切割点
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }

        // 切割中序数组
        // 左闭右开区间:[0, delimiterIndex)
        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        // [delimiterIndex + 1, end)
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

        // postorder 舍弃末尾元素
        postorder.resize(postorder.size() - 1);

        // 切割后序数组
        // 依然左闭右开,注意这里使用了左中序数组大小作为切割点
        // [0, leftInorder.size)
        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        // [leftInorder.size(), end)
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};

今日收获

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值