完全背包
学习链接:完全背包
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
在完全背包中,对于一维dp数组来说,两个for循环嵌套顺序是无所谓的
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:
遍历背包容量在外层循环,遍历物品在内层循环,状态如图:
而01背包的一维数组是从后向前遍历的,如果先遍历背包再遍历物品的话之前的dp[j]还是初始值没有经过计算
对于纯完全背包问题,其for循环的先后循环是可以颠倒的!
但如果题目稍稍有点变化,就会体现在遍历顺序上。
如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。
518. 零钱兑换 II
题目链接:518. 零钱兑换 II
文章讲解:代码随想录|518. 零钱兑换 II
思路
1.dp[j] :凑成总金额j的货币组合数
2.dp[j] += dp[j - coins[i]]; 就是所有dp[j - coins[i]]相加,代表此时有金币0~i时能凑成j的组合数
当coins[0]加入遍历时,d[j]表示有coins[0]时的组合数
当coins[1]加入遍历时,d[j]表示只有coins[0]和组合数+包含coins[1]时的组合数
当coins[2]加入遍历时,d[j]表示包含coins[0]和coins[1]时的组合数 + 包含coins[2]时的组合数
3.dp[0] = 1是 递归公式的基础
4.如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品
本题为求组合
代码
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
377. 组合总和 Ⅳ
题目链接:377. 组合总和 Ⅳ
文章讲解:代码随想录|377. 组合总和 Ⅳ
思路
本题是求排列
1.dp[i]: 凑成目标正整数为i的排列个数
2.dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。dp[i] += dp[i - nums[j]];
3.dp[0] = 1 没有意义,仅仅是为了推导递推公式。
4.如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!
所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历。
5.
代码
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 0; i <= target; i++) { // 遍历背包
for (int j = 0; j < nums.size(); j++) { // 遍历物品
if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
};