300.最长递增子序列
题目链接:300.最长递增子序列
文章讲解:代码随想录|300.最长递增子序列
视频讲解:300.最长递增子序列
思路
dp[i]:以nums[i]结尾的最长递增子序列长度
设0<j<i,需要在nums[j]<nums[i]的dp[j]中找到最大值,+1即为dp[i],所以递推方程为:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1)
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1
从前向后遍历
代码
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
vector<int> dp(nums.size(), 1);
int result = 0;
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
return result;
}
};
674. 最长连续递增序列
题目链接:674. 最长连续递增序列
文章讲解:代码随想录|674. 最长连续递增序列
思路
dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]。
如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。
即:dp[i] = dp[i - 1] + 1;
代码
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
vector<int> dp(nums.size(), 1);
int result = 1;
for(int i = 1; i < nums.size(); i++){
if(nums[i] > nums[i-1]) dp[i] = dp[i - 1] + 1;
result = max(dp[i] ,result);
}
return result;
}
};
718. 最长重复子数组
题目链接:718. 最长重复子数组
文章讲解:代码随想录|718. 最长重复子数组
视频讲解:718. 最长重复子数组
思路
1.dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]
(如果定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度,初始化会复杂)
2.当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1
3.根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;
所以dp[i][0] 和dp[0][j]初始化为0。
4.内外循环顺序都可
5.
代码
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for (int i = 1; i <= nums1.size(); i++) {
for (int j = 1; j <= nums2.size(); j++) {
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if (dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};