代码随想录算法训练营第55天|300.最长递增子序列、674. 最长连续递增序列、 718. 最长重复子数组

300.最长递增子序列

题目链接:300.最长递增子序列
文章讲解:代码随想录|300.最长递增子序列
视频讲解:300.最长递增子序列

思路

dp[i]:以nums[i]结尾的最长递增子序列长度
设0<j<i,需要在nums[j]<nums[i]的dp[j]中找到最大值,+1即为dp[i],所以递推方程为:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1)
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1
从前向后遍历

代码

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        vector<int> dp(nums.size(), 1);
        int result = 0;
        for (int i = 1; i < nums.size(); i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
            }
            if (dp[i] > result) result = dp[i]; // 取长的子序列
        }
        return result;
    }
};

674. 最长连续递增序列

题目链接:674. 最长连续递增序列
文章讲解:代码随想录|674. 最长连续递增序列

思路

dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]。
如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。
即:dp[i] = dp[i - 1] + 1;

代码

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        vector<int> dp(nums.size(), 1);
        int result = 1;
        for(int i = 1; i < nums.size(); i++){
            if(nums[i] > nums[i-1]) dp[i] = dp[i - 1] + 1;
            result = max(dp[i] ,result);
        }
        return result;
    }
};

718. 最长重复子数组

题目链接:718. 最长重复子数组
文章讲解:代码随想录|718. 最长重复子数组
视频讲解:718. 最长重复子数组

思路

1.dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]
(如果定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度,初始化会复杂)
2.当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1
3.根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;
所以dp[i][0] 和dp[0][j]初始化为0。
4.内外循环顺序都可
5.
在这里插入图片描述

代码

class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
        int result = 0;
        for (int i = 1; i <= nums1.size(); i++) {
            for (int j = 1; j <= nums2.size(); j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                if (dp[i][j] > result) result = dp[i][j];
            }
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值