概率论 —— 大数定律与中心极限定理

本文介绍了概率论中的依概率收敛、大数定律(切比雪夫、伯努利、辛钦)及中心极限定理。大数定律表明随机变量均值在大量重复实验中趋于稳定,而中心极限定理揭示了独立同分布随机变量和趋向正态分布的规律,为统计推断提供了理论基础。
摘要由CSDN通过智能技术生成

一、依概率收敛

  • 定义:设随机变量 X X X 与随机变量序列 { X n } ( n = 1 , 2 , 3 , . . . ) \{X_n\}(n=1,2,3,...) {Xn}(n=1,2,3,...),如果对任意的 ϵ > 0 \epsilon > 0 ϵ>0 ,有
    lim ⁡ n → ∞ P { ∣ X n − X ∣ ≥ ϵ } = 0 或 lim ⁡ n → ∞ P { ∣ X n − X ∣ < ϵ } = 1 \lim\limits_{n\to\infin}P\{|X_n-X| \geq \epsilon\} = 0 或 \lim\limits_{n\to\infin}P\{|X_n-X| < \epsilon\} = 1 nlimP{XnXϵ}=0nlimP{XnX<ϵ}=1
    则称随机变量序列 { X n } \{X_n\} {Xn} 依概率收敛于随机变量 X X X,记为
    lim ⁡ i → ∞ X n = X ( P ) 或 X n ⟶ P X ( n → ∞ ) \lim\limits_{i\to \infin} X_n = X(P) 或 X_n\stackrel{P}{\longrightarrow}X(n\to \infin) ilimXn=X(P)XnPX(n)
  • 注:以上定义中将随机变量 X X X 写成数 a a a 也成立

二、大数定律

  • 满足一定的条件下,所有大数定律的结论均为:随机变量均值依概率收敛到均值的期望,即:
    1 n ∑ i = 1 n X i ⟶ P E ( 1 n ∑ i = 1 n X i ) \frac{1}{n}\sum\limits_{i=1}^n X_i\stackrel{P}{\longrightarrow} E(\frac{1}{n}\sum\limits_{i=1}^nX_i) n1i=1nXiPE(n1i=1nXi)
  • 大数定律的意义在于:期望是一个确定的数,不是变量,大数定律体现了随机变量均值的稳定性,在大样本的情况下,随机变量均值趋于某稳定常数。

1. 切比雪夫大数定律

  • 假设 { X n } ( n = 1 , 2 , . . . ) \{X_n\}(n = 1,2,...) {Xn}(n=1,2,...)相互独立的随机变量序列,如果方差 D X i ( i ≥ 1 ) DX_i(i\geq1) DXi(i1)存在且一致有上界,即存在常数 C C C ,使 D X i ≤ C DX_i\leq C DXiC 对一切 i ≥ 1 i \geq 1 i1均成立,则 { X i } \{X_i\} {Xi} 服从大数定律
    1 n ∑ i = 1 n X i ⟶ P 1 n ∑ i = 1 n E X i ​ 即 X ˉ ⟶ P E X ˉ \frac{1}{n}\sum\limits_{i=1}^n X_i\stackrel{P}{\longrightarrow} \frac{1}{n}\sum\limits_{i=1}^n EX_i\\ ​ 即 \bar{X} \stackrel{P}{\longrightarrow} E\bar{X} n1i=1nXiPn1i=1nEXiXˉPEXˉ

    随机变量均值依概率收敛到自己的期望

  • 条件

    • 随机变量序列相互独立
    • 方差一致有上界

2. 伯努利大数定律

  • 假设 μ n \mu_n μn 是n重伯努利实验中事件A发生的次数,在每次试验中事件A方式的概率为 p ( 0 < p < 1 ) p(0<p<1) p(0<p<1),则 μ n n ⟶ P p \frac{\mu_n}{n} \stackrel{P}{\longrightarrow}p nμnPp,即对于任意 ϵ > 0 \epsilon > 0 ϵ>0,有
    lim ⁡ n → ∞ P { ∣ μ n n − p ∣ < ϵ } = 1 \lim\limits_{n\to \infin} P\{|\frac{\mu_n}{n}-p|<\epsilon\} = 1 nlimP{nμnp<ϵ}=1

  • 说明

    • 伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独立地进行的一种随机试验,其特点是该随机试验只有两种可能结果:发生或者不发生。抛硬币就是一种伯努利试验
    • n重伯努利实验就是重复做n次伯努利试验。
  • 这个定律就是形式化地描述了一个现象:随机事件发生的频率依概率收敛到概率

3. 辛钦大数定律

  • 假设 { X n } \{X_n\} {Xn}独立同分布的随机变量序列,如果 E X i = μ ( i = 1 , 2 , . . . ) EX_i = \mu(i=1,2,...) EXi=μ(i=1,2,...) 存在,则 1 n ∑ i = 1 n X i ⟶ P μ \frac{1}{n} \sum\limits_{i=1}^n X_i \stackrel{P}{\longrightarrow} \mu n1i=1nXiPμ,即对于任意 ϵ > 0 \epsilon > 0 ϵ>0,有
    lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − μ ∣ < ϵ } = 1 ​ 即 X ˉ = 1 n ∑ i = 1 n X i ⟶ P μ = E X i = E ( 1 n ∑ i = 1 n X i ) = E X ˉ \lim\limits_{n\to \infin}P\{|\frac{1}{n} \sum\limits_{i=1}^n X_i-\mu|<\epsilon\} = 1 \\ ​ 即\bar{X} = \frac{1}{n} \sum\limits_{i=1}^n X_i \stackrel{P}{\longrightarrow} \mu = EX_i = E(\frac{1}{n} \sum\limits_{i=1}^n X_i) = E\bar{X} nlimP{n1i=1nXiμ<ϵ}=1Xˉ=n1i=1nXiPμ=EXi=E(n1i=1nXi)=EXˉ

    随机变量均值依概率收敛到自己的期望

  • 条件

    • 随机变量相互独立
    • 随机变量同分布
    • 随机变量期望存在

三、中心极限定理

  • 所有中心极限定理其实在说这样一件事:若随机变量序列 { X i } \{X_i\} {Xi} 独立同分布,它们服从分布 F F F, 有 E X i = μ , D X i = σ 2 EX_i=\mu,DX_i = \sigma^2 EXi=μ,DXi=σ2 ∑ i = 1 n X i \sum\limits_{i=1}^nX_i i=1nXi 在大样本情况下服从正态分布 N ( n μ , n σ 2 ) N(n\mu,n\sigma^2) N(nμ,nσ2),再标准化后服从标准正太分布,即
    若 X i ∼ i . i . d F , E X i = μ , D X i = σ 2 则 ∑ i = 1 n X i ∼ n → ∞ N ( n μ , n σ 2 ) 即 ∑ i = 1 n X i − n μ n σ ∼ n → ∞ N ( 0 , 1 ) 若 X_i \stackrel{i.i.d}{\sim} F,EX_i = \mu,DX_i = \sigma^2\\ 则\sum\limits_{i=1}^nX_i \stackrel{n\to\infin}{\sim} N(n\mu,n\sigma^2) \\ 即\frac{\sum\limits_{i=1}^nX_i-n\mu}{\sqrt{n}\sigma}\stackrel{n\to\infin}{\sim}N(0,1) Xii.i.dF,EXi=μ,DXi=σ2i=1nXinN(nμ,nσ2)n σi=1nXinμnN(0,1)

  • 两种常见的中心极限定理
    在这里插入图片描述

    • 这里定理四就是构造了标准化正态分布,在大样本情况下满足标准正态分布的分布函数
    • 定理五就是指定了一个二项分布,二项分布可以拆开成n个两点分布 B ( 1 , p ) B(1,p) B(1,p) 求和,然后带入定理四得到
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值