依概率收敛


1. 背景

假设我们在生产线上一个接一个地检查产品是否合格。记 X n X_n Xn为第 n n n次检查中不合格的产品数量,它仅能取0和1,且 X n ∼ b ( 1 , p ) , n = 1 , 2 , ⋅ ⋅ ⋅ X_n \sim b(1,p), n =1, 2, ··· Xnb(1,p),n=1,2,,其中 p p p为该产品的不合格率。这是一个伯努利实验序列,其对应着一个独立同分布(二项分布)的随机变量序列: X 1 , X 2 , ⋅ ⋅ ⋅ X n X_1, X_2, ··· X_n X1,X2,Xn,记为 { X n } \{X_n\} {Xn}。如果考虑前 n n n次检查中不合格品数 S n = X 1 + X 2 + ⋅ ⋅ ⋅ + X n S_n=X_1+X_2+···+X_n Sn=X1+X2++Xn介于 a a a b b b间概率是多少?即 P ( a ≤ S n ≤ b ) = P ( a ≤ X 1 + X 2 + ⋅ ⋅ ⋅ + X n ≤ b ) = ? P(a \le S_n \le b)=P(a \le X_1+X_2+···+X_n \le b) = ? P(aSnb)=P(aX1+X2++Xnb)=?当然,由 S n ∼ b ( n , p ) S_n \sim b(n,p) Snb(n,p)可以算出此概率,但当 n n n比较大时(如 n = 1000 n=1000 n=1000 n = 10000 n=10000 n=10000)计算时比较困难的。那我们能否找到一个较为简单的随机变量 Y Y Y,使用其分布(在 n n n较大时)可以较容易地计算出上述概率的近似值,即 P ( a ≤ S n ≤ b ) ≈ P ( a ≤ Y ≤ b ) ( 在 n 较 大 时 ) P(a \le S_n \le b) \approx P(a \le Y \le b) \quad(在n较大时) P(aSnb)P(aYb)(n)那么在什么条件下和在什么意义下,随机变量序列 { S n } \{S_n\} {Sn}可以收敛于随机变量 Y ? Y? Y?

又如在上述伯努利实验序列中,前 n n n次检查中不合格品发生的频率 v n = S n / n v_n=S_n/n vn=Sn/n对不合格品率 p p p的偏差 ∣ v n − p ∣ |v_n-p| vnp是否可以任意小呢?当 n n n比较小时肯定不行;可当 n n n很大时情况会怎样呢?因此我们将研究随机序列 { v n } \{v_n\} {vn}的极限状态。

2. 定义

定义:设 { X n } \{X_n\} {Xn}为一随机变量序列, X X X为一随机变量,如果对任意的 ε > 0 \varepsilon>0 ε>0,有 P ( ∣ X n − X ∣ ≥ ε ) → 0 ( n → ∞ ) (1) P(|X_n-X| \ge \varepsilon)\rightarrow0\quad(n\rightarrow \infty) \tag{1} P(XnXε)0(n)(1)则称序列 { X n } \{X_n\} {Xn}依概率收敛于 X X X,记作 X n ⟶ P X X_n \stackrel{P}{\longrightarrow}X XnPX

依概率收敛的含义是: X n X_n Xn X X X的绝对偏差不小于任一给定量的可能性将随着 n n n增大而愈来愈小。或者说,绝对偏差 ∣ X n − X ∣ |X_n-X| XnX小于任一给定量的可能性将随着 n n n增大而愈来愈接近于1,即式(1)等价于 P { ∣ X n − X ∣ < ε } → 1 ( n → ∞ ) P\{|X_n-X|<\varepsilon \}\rightarrow1\quad(n\rightarrow \infty) P{XnX<ε}1(n)特别当 X X X为确定性分布时,即 P ( X = c ) = 1 P(X=c)=1 P(X=c)=1,则称序列 { X n } \{X_n\} {Xn}依概率收敛于 c c c,即 X n ⟶ P c . X_n \stackrel{P}{\longrightarrow}c. XnPc.

3. 定理

3.1 定义

定义:设 { X n } , { Y n } \{X_n\}, \{Y_n\} {Xn},{Yn}是两个随机变量序列, a , b a,b a,b是两个常数。如果 X n ⟶ p a , Y n ⟶ p b , X_n \stackrel{p}{\longrightarrow}a, Y_n \stackrel{p}{\longrightarrow}b, Xnpa,Ynpb,则有
( 1 ) X n ± Y n ⟶ p a ± b ; ( 2 ) X n × Y n ⟶ p a × b ; ( 3 ) X n ÷ Y n ⟶ p a ÷ b ( b ≠ 0 ) . (1) \quad X_n\pm Y_n \stackrel{p}{\longrightarrow}a \pm b;\\ (2)\quad X_n \times Y_n \stackrel{p}{\longrightarrow}a \times b;\\ (3)\quad X_n \div Y_n \stackrel{p}{\longrightarrow}a \div b \quad (b \neq 0). (1)Xn±Ynpa±b;(2)Xn×Ynpa×b;(3)Xn÷Ynpa÷b(b=0).

3.2 证明

证明
(1)因为 { ∣ ( X n + Y n ) − ( a + b ) ∣ ≥ ε } ⊂ { ( ∣ X n − a ∣ ≥ ε 2 ) ∪ ( ∣ Y n − b ∣ ≥ ε 2 ) } , \{|(X_n+Y_n)-(a+b)| \ge \varepsilon\} \subset \{(|X_n-a| \ge \frac{\varepsilon}{2})\cup(|Y_n-b| \ge \frac{\varepsilon}{2})\}, {(Xn+Yn)(a+b)ε}{(Xna2ε)(Ynb2ε)},所以
0 ≤ P ( ∣ ( X n + Y n ) − ( a + b ) ∣ ≥ ε ) ≤ P ( ∣ X n − a ∣ ≥ ε 2 ) + P ( ∣ Y n − b ∣ ≥ ε 2 ) → 0 ( n → ∞ ) 0\le P(|(X_n+Y_n)-(a+b)| \ge \varepsilon) \le P(|X_n-a| \ge \frac{\varepsilon}{2})+P(|Y_n-b| \ge \frac{\varepsilon}{2})\rightarrow0(n\rightarrow \infty) 0P((Xn+Yn)(a+b)ε)P(Xna2ε)+P(Ynb2ε)0(n)
P ( ∣ ( X n + Y n ) − ( a + b ) ∣ < ε ) → 1 ( n → ∞ ) P(|(X_n+Y_n)-(a+b)| < \varepsilon) \rightarrow 1(n\rightarrow \infty) P((Xn+Yn)(a+b)<ε)1(n)
由此可得 X n + Y n ⟶ p a + b X_n+ Y_n \stackrel{p}{\longrightarrow}a + b Xn+Ynpa+b.类似可证 X n − Y n ⟶ p a − b . X_n- Y_n \stackrel{p}{\longrightarrow}a - b. XnYnpab.

(2)为了证明 X n × Y n ⟶ p a × b X_n \times Y_n \stackrel{p}{\longrightarrow}a \times b Xn×Ynpa×b,我们分几步进行:

i) 若 X n ⟶ p 0 X_n \stackrel{p}{\longrightarrow}0 Xnp0,则有 X n 2 ⟶ p 0. X_n^2 \stackrel{p}{\longrightarrow}0. Xn2p0.这是因为对任意 ε > 0 , \varepsilon>0, ε>0, P ( ∣ X n 2 ∣ ≥ ε ) = P ( ∣ X n ∣ ≥ ε ) → 0 ( n → ∞ ) . P(|X_n^2 |\ge \varepsilon)=P(|X_n |\ge \sqrt{\varepsilon}) \rightarrow 0 (n\rightarrow \infty). P(Xn2ε)=P(Xnε )0(n).
ii) 若 X n ⟶ p a X_n \stackrel{p}{\longrightarrow}a Xnpa,则有 c X n ⟶ p c a . cX_n \stackrel{p}{\longrightarrow}ca. cXnpca.这是因为在 c ≠ 0 c\not=0 c=0时,有 P ( ∣ c X n − c a ∣ ≥ ε ) = P ( ∣ X n − a ∣ ≥ ε / ∣ c ∣ ) → 0 ( n → ∞ ) , P(|cX_n-ca|\ge \varepsilon)=P(|X_n-a|\ge\varepsilon/|c|)\rightarrow0(n\rightarrow \infty), P(cXncaε)=P(Xnaε/c)0(n),而当 c = 0 c=0 c=0时,结论显然成立。
iii) 若 X n ⟶ p a X_n \stackrel{p}{\longrightarrow}a Xnpa,则有 X n 2 ⟶ p a 2 X_n^2 \stackrel{p}{\longrightarrow}a^2 Xn2pa2.这是因为有以下一系列结论: X n − a ⟶ p 0 X_n-a \stackrel{p}{\longrightarrow}0 Xnap0 ( X n − a ) 2 ⟶ p 0 (X_n-a)^2 \stackrel{p}{\longrightarrow}0 (Xna)2p0 2 a ( X n − a ) ⟶ p 0 2a(X_n-a) \stackrel{p}{\longrightarrow}0 2a(Xna)p0 ( X n − a ) 2 + 2 a ( X n − a ) = X n 2 − a 2 ⟶ p 0 (X_n-a)^2+2a(X_n-a)=X_n^2-a^2\stackrel{p}{\longrightarrow}0 (Xna)2+2a(Xna)=Xn2a2p0,即 X n 2 ⟶ p a 2 . X_n^2\stackrel{p}{\longrightarrow}a^2. Xn2pa2.
iv)由iii)及(1)知
X n 2 ⟶ p a 2 X_n^2 \stackrel{p}{\longrightarrow}a^2 Xn2pa2 Y n 2 ⟶ p b 2 Y_n^2 \stackrel{p}{\longrightarrow}b^2 Yn2pb2 X n 2 + Y n 2 ⟶ p a 2 + b 2 . X_n^2+Y_n^2 \stackrel{p}{\longrightarrow}a^2+b^2. Xn2+Yn2pa2+b2.从而有
X n × Y n = 1 2 [ ( X n + Y n ) 2 − X n 2 + − Y n 2 ] ⟶ p 1 2 [ ( a n + b n ) 2 − a n 2 − b n 2 ] = a b X_n \times Y_n=\frac{1}{2}[(X_n + Y_n)^2-X_n^2 +-Y_n^2] \stackrel{p}{\longrightarrow}\frac{1}{2}[(a_n + b_n)^2-a_n^2 - b_n^2]=ab Xn×Yn=21[(Xn+Yn)2Xn2+Yn2]p21[(an+bn)2an2bn2]=ab
(3)为了证明 X n ÷ Y n ⟶ p a ÷ b X_n \div Y_n \stackrel{p}{\longrightarrow}a \div b Xn÷Ynpa÷b,我们先证: 1 ÷ Y n ⟶ p 1 ÷ b 1 \div Y_n \stackrel{p}{\longrightarrow}1 \div b 1÷Ynp1÷b.这是因为对任意 ε > 0 \varepsilon>0 ε>0,有
P ( ∣ 1 Y n − 1 b ∣ ≥ ε ) = P ( ∣ Y n − b Y n b ∣ ≥ ε ) = P ( ∣ Y n − b b 2 + b ( Y n − b ) ∣ , ∣ Y n − b ∣ < ε ) + P ( ∣ Y n − b b 2 + b ( Y n − b ) ∣ , ∣ Y n − b ∣ ≥ ε ) ≤ P ( ∣ Y n − b b 2 − ε ∣ b ∣ ∣ ≥ ε ) + P ( ∣ Y n − b ∣ ≥ ε ) = P ( ∣ Y n − b ∣ ≥ ( b 2 − ε ∣ b ∣ ) ε ) + P ( ∣ Y n − b ∣ ≥ ε ) → 0 ( n → ∞ ) . \begin{aligned} P(|\frac{1}{Y_n}-\frac{1}{b}|\ge \varepsilon)&=P(|\frac{Y_n-b}{Y_nb}|\ge \varepsilon)\\ &=P(|\frac{Y_n-b}{b^2+b(Y_n-b)}|,|Y_n-b|<\varepsilon)+P(|\frac{Y_n-b}{b^2+b(Y_n-b)}|,|Y_n-b|\ge \varepsilon)\\ &\le P(|\frac{Y_n-b}{b^2-\varepsilon|b|}|\ge\varepsilon)+P(|Y_n-b|\ge \varepsilon)\\ &=P(|Y_n-b|\ge(b^2-\varepsilon|b|)\varepsilon)+P(|Y_n-b|\ge \varepsilon)\rightarrow0(n\rightarrow\infty). \end{aligned} P(Yn1b1ε)=P(YnbYnbε)=P(b2+b(Ynb)Ynb,Ynb<ε)+P(b2+b(Ynb)Ynb,Ynbε)P(b2εbYnbε)+P(Ynbε)=P(Ynb(b2εb)ε)+P(Ynbε)0(n).
这就证明了 1 Y n ⟶ P 1 b \frac{1}{Y_n}\stackrel{P}{\longrightarrow}\frac{1}{b} Yn1Pb1,再与 X n ⟶ P a X_n\stackrel{P}{\longrightarrow}a XnPa结合,利用(2)即得 X n ÷ Y n ⟶ p a ÷ b X_n \div Y_n \stackrel{p}{\longrightarrow}a \div b Xn÷Ynpa÷b.
由此定理可以看出,随机变量序列在概率意义上的极限(即依概率收敛于常数a)在四则运算下仍然成立。


更多内容请关注公众号:Herbie


4. 参考文献

[1] 茆诗松, 程依明, 濮晓龙. 概率论与数理统计教程(第二版)[M]. 高等教育出版社, 2019.

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
引用中给出了依概率收敛的定义,即$\lim\limits_{n\rightarrow\infty}P\{|X_n-X|\ge\epsilon\}=0$,记为$X_n\xrightarrow{P}X$。这个定义表示对于给定的任意小的正数$\epsilon$,随着$n$趋向于无穷大,随机变量$X_n$以概率$1$接近于$X$。 引用中给出了依概率收敛的证明方法。证明的过程是通过对累积分布函数$FX_n(x)$进行分析来得到的。具体地,证明使用了事件的交集和并集的性质,以及随机变量$X_n$和$X$之间的距离$|X_n-X|$。根据这些性质,我们可以得到$FX_n(x)$与$FX(x)$之间的关系,并通过控制$FX_n(x)$和$FX(x)$之间的差异来证明依概率收敛的定义。 综上所述,依概率收敛是一种随机变量序列以概率$1$收敛于某个随机变量的性质。它可以通过分析累积分布函数来进行证明。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [读书笔记:收敛性 ← 随机过程](https://blog.csdn.net/hnjzsyjyj/article/details/123285972)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [漫步数理统计三十一——依分布收敛](https://blog.csdn.net/u010182633/article/details/73252655)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值