- 参考:张宇高等数学基础30讲
文章目录
1. 基本概念
1.1 随机试验
-
随机试验/试验
是满足以下三个条件的试验 ,记作 E E E- 试验可以在相同的条件下重复进行
- 试验所有的可能结果都是明确可知的,并且不止一个
- 每一次试验会出现哪一个结果,事前并不能确定
-
我们通过研究随机试验来研究随机现象,抛硬币、掷色子都是随机试验
1.2 随机事件
- 在一次试验中可能出现,也可能不出现的结果称为
随机事件/事件
,用大写字母 A , B , C A,B,C A,B,C 等表示必然事件
Ω \Omega Ω:每次试验中一定发生的事件不可能事件
∅ \empty ∅:每次试验中一定不发生的事件
- 随机事件在一次试验中是否发生虽然不能事前确定,但是在大量重复试验的情况下,它的发生具有一定的统计规律性,概率论研究的就是这种规律性
1.3 样本空间
- 随机试验的每一个可能(不能再分)结果称为
样本点
,记作 w w w- 样本点的全体组成的集合称为
样本空间/基本事件空间
,记作 Ω = { w } \Omega = \{w\} Ω={w} - 由一个样本点构成的事件称为
基本事件
- 随机事件 A A A 总是由若干个基本事件组成,即 A ⊂ Ω A \subset \Omega A⊂Ω
- 样本点的全体组成的集合称为
2. 事件的关系与运算
2.1 定义
包含
:如果事件 A A A 发生必导致事件 B B B 发生,则称事件 B B B包含
事件 A A A(或 A A A 被 B B B 包含),记为 A ⊂ B A \subset B A⊂B相等
:如果 A ⊂ B A \subset B A⊂B 且 B ⊂ A B \subset A B⊂A,则称事件 A A A 和 B B B相等
,记为 A = B A = B A=B。实际上也就是说, A A A 和 B B B 由完全相同的一些试验结果构成,它不过是同一事件表面上看起来两个不同的说法而已事件的积/交
:称 “事件 A A A 与事件 B B B 同时发生” 这一事件为事件 A A A 与 B B B 的积
/交
,记为 A ∩ B A\cap B A∩B 或 A B AB AB
事件的和/并
:称 “事件 A A A 与事件 B B B 至少有一个发生” 这一事件为事件 A A A 与 B B B 的和
/并
,记为 A ∪ B A\cup B A∪B
事件的差
:称 “事件 A A A 发生而事件 B B B 不发生” 这一事件为事件 A A A 与 B B B 的差
,记为 A − B A-B A−B逆事件
:称 “事件 A A A 不发生” 这一事件为事件 A A A 的逆事件
/对立事件
,记为 A ˉ \bar{A} Aˉ,由定义易知
A − B = A − A B = A B ˉ B = A ˉ ⇔ A B = ∅ 且 A ∪ B = Ω \begin{aligned} &A-B = A-AB = A\bar{B} \\ &B = \bar{A} \Leftrightarrow AB = \empty \space 且 A \cup B = \Omega \end{aligned} A−B=A−AB=ABˉB=Aˉ⇔AB=∅ 且A∪B=Ω相容、互斥
:若 A B ≠ ∅ AB \neq \empty AB=∅,则称事件 A A A 和 B B B相容
;若 A B = ∅ AB = \empty AB=∅,则称事件 A A A 和 B B B互不相容/互斥
,如果一些事件中任意两个都互斥,则称这些事件是两两互斥
的完备事件组
:若有限个/可列个事件 A 1 , A 2 , . . . , A n ( , . . . ) A_1,A_2,...,A_n(,...) A1,A2,...,An(,...) 满足 ⋃ i = 1 n A i = Ω \bigcup_{i=1}^n A_i = \Omega ⋃i=1nAi=Ω 或 ⋃ i = 1 ∞ A i = Ω \bigcup_{i=1}^\infin A_i = \Omega ⋃i=1∞Ai=Ω, A i A j = ∅ ( i ≠ j ) A_iA_j = \empty\space(i\neq j) AiAj=∅ (i=j),则称这些事件构成一个完备事件组
2.2 运算法则
吸收律
:若 A ⊂ B A\subset B A⊂B,则 A ∪ B = B A\cup B = B A∪B=B, A ∩ B = A A\cap B = A A∩B=A交换律
: A ∪ B = B ∪ A A ∩ B = B ∩ A \begin{aligned}A \cup B = B\cup A \\A \cap B = B\cap A\end{aligned} A∪B=B∪AA∩B=B∩A结合律
: ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) \begin{aligned} (A \cap B) \cap C = A\cap (B \cap C) \\ (A \cup B) \cup C = A\cup (B \cup C)\end{aligned} (A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)分配律
: A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A ∩ ( B − C ) = ( A ∩ B ) − ( A ∩ C ) \begin{aligned}A \cap(B \cup C) = (A\cap B) \cup (A\cap C) \\ A \cup (B \cap C) = (A\cup B)\cap (A\cup C) \\ A\cap(B-C) = (A\cap B) - (A\cap C)\end{aligned} A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)A∩(B−C)=(A∩B)−(A∩C)对偶律/德摩根律
: A ∪ B ‾ = A ‾ ∩ B ‾ A ∩ B ‾ = A ‾ ∪ B ‾ \begin{aligned}\overline{A\cup B} = \overline{A} \cap \overline{B} \\ \overline{A\cap B} = \overline{A} \cup \overline{B}\end{aligned} A∪B=A∩BA∩B=A∪B
3. 概率的定义
3.1 描述性定义
- 通常将随机事件 A A A 发生的可能性大小的度量(非负值),称为事件 A A A 发生的概率,记为 P ( A ) P(A) P(A)
3.2 统计性定义
- 在相同条件下做重复试验,事件
A
A
A 出现的次数
k
k
k 和总试验次数
n
n
n 之比
k
n
\frac{k}{n}
nk,称为事件
A
A
A 在这
n
n
n 次试验中出现的
频率
。当试验次数充分大时,频率将 “稳定” 于某个常数 p p p 附近, n n n 越大,频率偏离这个常数 p p p 的可能性越小。这个常数 p p p 就称为事件 A A A 的概率
lim n → ∞ 频 率 = 概 率 \lim_{n\to \infin} 频率 = 概率 n→∞lim频率=概率 - 注意:频率并非概率本身,只是概率的估计
3.3 公理化定义
-
设随机试验的样本空间为 Ω \Omega Ω,如果对每一个事件 A A A 都有一个确定的实数 P ( A ) P(A) P(A),且事件函数 P ( ⋅ ) P(·) P(⋅) 满足:
非负性
: P ( A ) ≥ 0 P(A)\geq 0 P(A)≥0规范性
: P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1可列可加性
:对任意可列个互斥事件 A 1 , A 2 , . . . , A n , . . . A_1,A_2,...,A_n,... A1,A2,...,An,... (即 A i A j = ∅ , i ≠ j A_iA_j = \empty,i\neq j AiAj=∅,i=j),有
P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\bigcup_{i=1}^\infin A_i) = \sum_{i=1}^\infin P(A_i) P(i=1⋃∞Ai)=i=1∑∞P(Ai)
则称 P ( ⋅ ) P(· ) P(⋅) 为
概率
, P ( A ) P(A) P(A) 为事件 A A A 的概率 -
注:数学上的 “公理”,就是一些不加证明而承认的前提,上述公理化定义界定了概率这个概念所必须满足的一些一般性质
4. 古典概型和几何概型
4.1 古典概型
- 若随机试验的概率模型的样本空间满足以下条件,称之为
古典概型
- 只有有限个样本点(基本事件)
- 每个样本点(基本事件)发生的可能性都一样
- 设基本事件数为
n
n
n,事件
A
A
A 包含
k
k
k 个基本事件,则古典概型计算出的事件概率(称为
古典概率
)为
P ( A ) = k n = 事 件 A 所 包 含 的 基 本 事 件 的 个 数 基 本 事 件 总 数 P(A) = \frac{k}{n} = \frac{事件A所包含的基本事件的个数}{基本事件总数} P(A)=nk=基本事件总数事件A所包含的基本事件的个数 - 示例:掷骰子
- 计算
随机分配类题目
简单随机抽样类题目
4.2 几何概型
- 若随机试验的概率模型的样本空间满足以下条件,称之为
几何概型
- 样本空间(基本事件空间) Ω \Omega Ω 是一个可以度量的有界区域
- 每个样本点(基本事件)发生的可能性向都一样,即样本点罗落入 Ω \Omega Ω 的某个可度量子区域 S S S 的可能性大小与 S S S 的几何度量成正比,而与 S S S 的位置以及形状无关
- 在几何概型随机试验中,如果
S
A
S_A
SA 是样本空间
Ω
\Omega
Ω 的一个可度量的子区域,则事件
A
=
{
样
本
点
落
入
区
域
S
A
}
A = \{样本点落入区域 S_A\}
A={样本点落入区域SA} 的概率(称为
几何概率
)为
P ( A ) = S A 的 几 何 度 量 Ω 的 几 何 度 量 P(A) = \frac{S_A的几何度量}{\Omega的几何度量} P(A)=Ω的几何度量SA的几何度量 - 示例:操场上随机位置掉下个馅饼,你举着饭盒去接,那么你接到馅饼的概率为
饭
盒
面
积
/
操
场
面
积
饭盒面积/操场面积
饭盒面积/操场面积
- 计算
5. 概率的基本性质与公式
5.1 性质
-
有界性
:对于任意事件 A A A,有 0 ≤ P ( a ) ≤ 1 0\leq P(a) \leq 1 0≤P(a)≤1 且 P ( ∅ ) = 0 , P ( Ω ) = 1 P(\empty) = 0,P(\Omega)=1 P(∅)=0,P(Ω)=1。
P ( A ) = 0 ⇏ A = ∅ P ( A ) = 0 ⇐ A = ∅ P(A) = 0 \nRightarrow A = \empty \\ P(A) = 0 \Leftarrow A = \empty \\ P(A)=0⇏A=∅P(A)=0⇐A=∅
注意,不可能事件 ∅ \empty ∅ 发生的概率一定为 0,但概率为 0 的事件不一定是不可能事件(即有可能发生),这可以从几何概型角度思考,样本空间中上一个点有着无限小的长度、面积、体积… -
单调性
:设 A , B A,B A,B 是两个事件,若 A ⊂ B A\subset B A⊂B,则有
P ( B − A ) = P ( B ) − P ( B A ) = P ( B ) − P ( A ) P ( B ) ≥ P ( A ) \begin{aligned} &P(B-A) = P(B) - P(BA) = P(B)-P(A) \\ &P(B) \geq P(A) \end{aligned} P(B−A)=P(B)−P(BA)=P(B)−P(A)P(B)≥P(A)
注意,虽然 A A A 真包含于 B B B,但 P ( B ) ≥ P ( A ) P(B) \geq P(A) P(B)≥P(A) 的等号依然可取,这也可以从几何概型的角度考虑,从可度量区域中扣去几个点,其几何度量不变
5.2 公式
- 对于任意事件
A
,
B
A,B
A,B
逆事件概率公式
: P ( A ‾ ) = 1 − P ( A ) P(\overline{A}) = 1-P(A) P(A)=1−P(A)加法公式
: P ( A ∪ B ) P(A\cup B) P(A∪B) = P(A) +P(B) - P(AB)
减法公式
: P ( A − B ) = P ( A ) − P ( A B ) = P ( A B ‾ ) P(A-B) = P(A) - P(AB) = P(A\overline{B}) P(A−B)=P(A)−P(AB)=P(AB)条件概率公式
: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac{P(AB)}{P(A)} P(B∣A)=P(A)P(AB)
乘法公式
: P ( A B ) = P ( A ) P ( B ∣ A ) P ( A 1 A 2 . . . A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 A 2 . . . A n − 1 ) \begin{aligned}&P(AB) = P(A)P(B|A) \\ &P(A_1A_2...A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})\end{aligned} P(AB)=P(A)P(B∣A)P(A1A2...An)=P(A1)P(A2∣A1)P(A3∣A1A2)...P(An∣A1A2...An−1)全概率公式
:若 ⋃ i = 1 n A i = Ω \bigcup_{i=1}^n A_i = \Omega ⋃i=1nAi=Ω, A i A j = ∅ ( i ≠ j ) , P ( A i ) ≥ 0 A_iA_j = \empty \space(i\neq j), P(A_i) \geq 0 AiAj=∅ (i=j),P(Ai)≥0 (即 A i A_i Ai 是完备事件组),则对任意事件 B B B,有
B = ⋃ i = 1 n A i B , P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) B = \bigcup_{i=1}^nA_iB,\space\space P(B) = \sum_{i=1}^nP(A_i)P(B|A_i) B=i=1⋃nAiB, P(B)=i=1∑nP(Ai)P(B∣Ai)
可以看做每个 A i A_i Ai 都是 B B B 发生的原因之一,相当于 “由因找果”,证明:
P ( B ) = P ( B Ω ) = P ( B ( A 1 ∪ A 2 ∪ . . . ∪ A n ) ) = P ( B A 1 ∪ B A 2 ∪ . . . ∪ B A n ) = P ( B A 1 ) + P ( B A 2 ) + . . . + P ( B A n ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) \begin{aligned} P(B) = P(B\Omega) &= P(B(A_1\cup A_2\cup...\cup A_n)) \\ &= P(BA_1\cup BA_2 \cup ... \cup BA_n)\\ &= P(BA_1)+P(BA_2) + ... +P(BA_n) \\ &=\sum_{i=1}^nP(A_i)P(B|A_i) \end{aligned} P(B)=P(BΩ)=P(B(A1∪A2∪...∪An))=P(BA1∪BA2∪...∪BAn)=P(BA1)+P(BA2)+...+P(BAn)=i=1∑nP(Ai)P(B∣Ai)逆概率公式/贝叶斯公式
:若 ⋃ i = 1 n A i = Ω \bigcup_{i=1}^n A_i = \Omega ⋃i=1nAi=Ω, A i A j = ∅ ( i ≠ j ) , P ( A i ) ≥ 0 A_iA_j = \empty \space(i\neq j), P(A_i) \geq 0 AiAj=∅ (i=j),P(Ai)≥0 (即 A i A_i Ai 是完备事件组),则对任意事件 B B B,只要 P ( B ) > 0 P(B)>0 P(B)>0,就有
P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) ( j = 1 , 2 , . . . , n ) P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^nP(A_i)P(B|A_i)}\space(j=1,2,...,n) P(Aj∣B)=∑i=1nP(Ai)P(B∣Ai)P(Aj)P(B∣Aj) (j=1,2,...,n)
可以看做是已知 B B B 事件发生,反过来看 B B B 是由各个条件 A j A_j Aj 引起的概率,相当于 “执果找因”