概率论 —— 随机事件与概率

  • 参考:张宇高等数学基础30讲

1. 基本概念

1.1 随机试验

  • 随机试验/试验 是满足以下三个条件的试验 ,记作 E E E

    1. 试验可以在相同的条件重复进行
    2. 试验所有的可能结果都是明确可知的,并且不止一个
    3. 每一次试验会出现哪一个结果,事前并不能确定
  • 我们通过研究随机试验来研究随机现象,抛硬币、掷色子都是随机试验

1.2 随机事件

  • 在一次试验中可能出现,也可能不出现的结果称为 随机事件/事件,用大写字母 A , B , C A,B,C A,B,C 等表示
    1. 必然事件 Ω \Omega Ω:每次试验中一定发生的事件
    2. 不可能事件 ∅ \empty :每次试验中一定不发生的事件
  • 随机事件在一次试验中是否发生虽然不能事前确定,但是在大量重复试验的情况下,它的发生具有一定的统计规律性,概率论研究的就是这种规律性

1.3 样本空间

  • 随机试验的每一个可能(不能再分)结果称为 样本点,记作 w w w
    1. 样本点的全体组成的集合称为 样本空间/基本事件空间,记作 Ω = { w } \Omega = \{w\} Ω={w}
    2. 一个样本点构成的事件称为 基本事件
    3. 随机事件 A A A 总是由若干个基本事件组成,即 A ⊂ Ω A \subset \Omega AΩ

2. 事件的关系与运算

2.1 定义

  1. 包含:如果事件 A A A 发生必导致事件 B B B 发生,则称事件 B B B 包含 事件 A A A(或 A A A B B B 包含),记为 A ⊂ B A \subset B AB
  2. 相等:如果 A ⊂ B A \subset B AB B ⊂ A B \subset A BA,则称事件 A A A B B B 相等,记为 A = B A = B A=B。实际上也就是说, A A A B B B 由完全相同的一些试验结果构成,它不过是同一事件表面上看起来两个不同的说法而已
  3. 事件的积/交:称 “事件 A A A 与事件 B B B 同时发生” 这一事件为事件 A A A B B B/,记为 A ∩ B A\cap B AB A B AB AB
    在这里插入图片描述
  4. 事件的和/并:称 “事件 A A A 与事件 B B B 至少有一个发生” 这一事件为事件 A A A B B B/,记为 A ∪ B A\cup B AB
    在这里插入图片描述
  5. 事件的差:称 “事件 A A A 发生而事件 B B B 不发生” 这一事件为事件 A A A B B B,记为 A − B A-B AB
  6. 逆事件:称 “事件 A A A 不发生” 这一事件为事件 A A A逆事件 /对立事件,记为 A ˉ \bar{A} Aˉ,由定义易知
    A − B = A − A B = A B ˉ B = A ˉ ⇔ A B = ∅   且 A ∪ B = Ω \begin{aligned} &A-B = A-AB = A\bar{B} \\ &B = \bar{A} \Leftrightarrow AB = \empty \space 且 A \cup B = \Omega \end{aligned} AB=AAB=ABˉB=AˉAB= AB=Ω
  7. 相容、互斥:若 A B ≠ ∅ AB \neq \empty AB=,则称事件 A A A B B B 相容;若 A B = ∅ AB = \empty AB=,则称事件 A A A B B B 互不相容/互斥,如果一些事件中任意两个都互斥,则称这些事件是 两两互斥
  8. 完备事件组:若有限个/可列个事件 A 1 , A 2 , . . . , A n ( , . . . ) A_1,A_2,...,A_n(,...) A1,A2,...,An(,...) 满足 ⋃ i = 1 n A i = Ω \bigcup_{i=1}^n A_i = \Omega i=1nAi=Ω ⋃ i = 1 ∞ A i = Ω \bigcup_{i=1}^\infin A_i = \Omega i=1Ai=Ω, A i A j = ∅   ( i ≠ j ) A_iA_j = \empty\space(i\neq j) AiAj= (i=j),则称这些事件构成一个 完备事件组
    在这里插入图片描述

2.2 运算法则

  1. 吸收律:若 A ⊂ B A\subset B AB,则 A ∪ B = B A\cup B = B AB=B A ∩ B = A A\cap B = A AB=A
  2. 交换律 A ∪ B = B ∪ A A ∩ B = B ∩ A \begin{aligned}A \cup B = B\cup A \\A \cap B = B\cap A\end{aligned} AB=BAAB=BA
  3. 结合律 ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) \begin{aligned} (A \cap B) \cap C = A\cap (B \cap C) \\ (A \cup B) \cup C = A\cup (B \cup C)\end{aligned} (AB)C=A(BC)(AB)C=A(BC)
  4. 分配律 A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A ∩ ( B − C ) = ( A ∩ B ) − ( A ∩ C ) \begin{aligned}A \cap(B \cup C) = (A\cap B) \cup (A\cap C) \\ A \cup (B \cap C) = (A\cup B)\cap (A\cup C) \\ A\cap(B-C) = (A\cap B) - (A\cap C)\end{aligned} A(BC)=(AB)(AC)A(BC)=(AB)(AC)A(BC)=(AB)(AC)
  5. 对偶律/德摩根律 A ∪ B ‾ = A ‾ ∩ B ‾ A ∩ B ‾ = A ‾ ∪ B ‾ \begin{aligned}\overline{A\cup B} = \overline{A} \cap \overline{B} \\ \overline{A\cap B} = \overline{A} \cup \overline{B}\end{aligned} AB=ABAB=AB
    在这里插入图片描述

3. 概率的定义

3.1 描述性定义

  • 通常将随机事件 A A A 发生的可能性大小的度量(非负值),称为事件 A A A 发生的概率,记为 P ( A ) P(A) P(A)

3.2 统计性定义

  • 在相同条件下做重复试验,事件 A A A 出现的次数 k k k 和总试验次数 n n n 之比 k n \frac{k}{n} nk,称为事件 A A A 在这 n n n 次试验中出现的频率当试验次数充分大时,频率将 “稳定” 于某个常数 p p p 附近 n n n 越大,频率偏离这个常数 p p p 的可能性越小。这个常数 p p p 就称为事件 A A A概率
    lim ⁡ n → ∞ 频 率 = 概 率 \lim_{n\to \infin} 频率 = 概率 nlim=
  • 注意:频率并非概率本身,只是概率的估计

3.3 公理化定义

  • 设随机试验的样本空间为 Ω \Omega Ω,如果对每一个事件 A A A 都有一个确定的实数 P ( A ) P(A) P(A),且事件函数 P ( ⋅ ) P(·) P() 满足:

    1. 非负性 P ( A ) ≥ 0 P(A)\geq 0 P(A)0
    2. 规范性 P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1
    3. 可列可加性:对任意可列个互斥事件 A 1 , A 2 , . . . , A n , . . . A_1,A_2,...,A_n,... A1,A2,...,An,... (即 A i A j = ∅ , i ≠ j A_iA_j = \empty,i\neq j AiAj=,i=j),有
      P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\bigcup_{i=1}^\infin A_i) = \sum_{i=1}^\infin P(A_i) P(i=1Ai)=i=1P(Ai)

    则称 P ( ⋅ ) P(· ) P()概率 P ( A ) P(A) P(A) 为事件 A A A 的概率

  • 注:数学上的 “公理”,就是一些不加证明而承认的前提,上述公理化定义界定了概率这个概念所必须满足的一些一般性质

4. 古典概型和几何概型

4.1 古典概型

  • 若随机试验的概率模型的样本空间满足以下条件,称之为 古典概型
    1. 只有有限个样本点(基本事件)
    2. 每个样本点(基本事件)发生的可能性都一样
  • 设基本事件数为 n n n,事件 A A A 包含 k k k 个基本事件,则古典概型计算出的事件概率(称为 古典概率)为
    P ( A ) = k n = 事 件 A 所 包 含 的 基 本 事 件 的 个 数 基 本 事 件 总 数 P(A) = \frac{k}{n} = \frac{事件A所包含的基本事件的个数}{基本事件总数} P(A)=nk=A
  • 示例:掷骰子
  • 计算
    在这里插入图片描述
    随机分配类题目 在这里插入图片描述
    简单随机抽样类题目
    在这里插入图片描述

4.2 几何概型

  • 若随机试验的概率模型的样本空间满足以下条件,称之为 几何概型
    1. 样本空间(基本事件空间) Ω \Omega Ω 是一个可以度量的有界区域
    2. 每个样本点(基本事件)发生的可能性向都一样,即样本点罗落入 Ω \Omega Ω 的某个可度量子区域 S S S 的可能性大小与 S S S 的几何度量成正比,而与 S S S 的位置以及形状无关
  • 在几何概型随机试验中,如果 S A S_A SA 是样本空间 Ω \Omega Ω 的一个可度量的子区域,则事件 A = { 样 本 点 落 入 区 域 S A } A = \{样本点落入区域 S_A\} A={SA} 的概率(称为 几何概率)为
    P ( A ) = S A 的 几 何 度 量 Ω 的 几 何 度 量 P(A) = \frac{S_A的几何度量}{\Omega的几何度量} P(A)=ΩSA
  • 示例:操场上随机位置掉下个馅饼,你举着饭盒去接,那么你接到馅饼的概率为 饭 盒 面 积 / 操 场 面 积 饭盒面积/操场面积 /
    在这里插入图片描述
  • 计算
    在这里插入图片描述

5. 概率的基本性质与公式

5.1 性质

  1. 有界性:对于任意事件 A A A,有 0 ≤ P ( a ) ≤ 1 0\leq P(a) \leq 1 0P(a)1 P ( ∅ ) = 0 , P ( Ω ) = 1 P(\empty) = 0,P(\Omega)=1 P()=0,P(Ω)=1
    P ( A ) = 0 ⇏ A = ∅ P ( A ) = 0 ⇐ A = ∅ P(A) = 0 \nRightarrow A = \empty \\ P(A) = 0 \Leftarrow A = \empty \\ P(A)=0A=P(A)=0A=
    注意,不可能事件 ∅ \empty 发生的概率一定为 0,但概率为 0 的事件不一定是不可能事件(即有可能发生),这可以从几何概型角度思考,样本空间中上一个点有着无限小的长度、面积、体积…

  2. 单调性:设 A , B A,B A,B 是两个事件,若 A ⊂ B A\subset B AB,则有
    P ( B − A ) = P ( B ) − P ( B A ) = P ( B ) − P ( A ) P ( B ) ≥ P ( A ) \begin{aligned} &P(B-A) = P(B) - P(BA) = P(B)-P(A) \\ &P(B) \geq P(A) \end{aligned} P(BA)=P(B)P(BA)=P(B)P(A)P(B)P(A)
    注意,虽然 A A A 真包含于 B B B,但 P ( B ) ≥ P ( A ) P(B) \geq P(A) P(B)P(A) 的等号依然可取,这也可以从几何概型的角度考虑,从可度量区域中扣去几个点,其几何度量不变

5.2 公式

  • 对于任意事件 A , B A,B A,B
    1. 逆事件概率公式 P ( A ‾ ) = 1 − P ( A ) P(\overline{A}) = 1-P(A) P(A)=1P(A)
    2. 加法公式 P ( A ∪ B ) P(A\cup B) P(AB) = P(A) +P(B) - P(AB)
      在这里插入图片描述
    3. 减法公式 P ( A − B ) = P ( A ) − P ( A B ) = P ( A B ‾ ) P(A-B) = P(A) - P(AB) = P(A\overline{B}) P(AB)=P(A)P(AB)=P(AB)
    4. 条件概率公式 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
      在这里插入图片描述
    5. 乘法公式 P ( A B ) = P ( A ) P ( B ∣ A ) P ( A 1 A 2 . . . A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 A 2 . . . A n − 1 ) \begin{aligned}&P(AB) = P(A)P(B|A) \\ &P(A_1A_2...A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})\end{aligned} P(AB)=P(A)P(BA)P(A1A2...An)=P(A1)P(A2A1)P(A3A1A2)...P(AnA1A2...An1)
    6. 全概率公式:若 ⋃ i = 1 n A i = Ω \bigcup_{i=1}^n A_i = \Omega i=1nAi=Ω A i A j = ∅   ( i ≠ j ) , P ( A i ) ≥ 0 A_iA_j = \empty \space(i\neq j), P(A_i) \geq 0 AiAj= (i=j),P(Ai)0 (即 A i A_i Ai完备事件组),则对任意事件 B B B,有
      B = ⋃ i = 1 n A i B ,    P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) B = \bigcup_{i=1}^nA_iB,\space\space P(B) = \sum_{i=1}^nP(A_i)P(B|A_i) B=i=1nAiB,  P(B)=i=1nP(Ai)P(BAi)
      可以看做每个 A i A_i Ai 都是 B B B 发生的原因之一,相当于 “由因找果”,证明:
      P ( B ) = P ( B Ω ) = P ( B ( A 1 ∪ A 2 ∪ . . . ∪ A n ) ) = P ( B A 1 ∪ B A 2 ∪ . . . ∪ B A n ) = P ( B A 1 ) + P ( B A 2 ) + . . . + P ( B A n ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) \begin{aligned} P(B) = P(B\Omega) &= P(B(A_1\cup A_2\cup...\cup A_n)) \\ &= P(BA_1\cup BA_2 \cup ... \cup BA_n)\\ &= P(BA_1)+P(BA_2) + ... +P(BA_n) \\ &=\sum_{i=1}^nP(A_i)P(B|A_i) \end{aligned} P(B)=P(BΩ)=P(B(A1A2...An))=P(BA1BA2...BAn)=P(BA1)+P(BA2)+...+P(BAn)=i=1nP(Ai)P(BAi)
    7. 逆概率公式/贝叶斯公式:若 ⋃ i = 1 n A i = Ω \bigcup_{i=1}^n A_i = \Omega i=1nAi=Ω A i A j = ∅   ( i ≠ j ) , P ( A i ) ≥ 0 A_iA_j = \empty \space(i\neq j), P(A_i) \geq 0 AiAj= (i=j),P(Ai)0 (即 A i A_i Ai完备事件组),则对任意事件 B B B,只要 P ( B ) > 0 P(B)>0 P(B)>0,就有
      P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i )   ( j = 1 , 2 , . . . , n ) P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^nP(A_i)P(B|A_i)}\space(j=1,2,...,n) P(AjB)=i=1nP(Ai)P(BAi)P(Aj)P(BAj) (j=1,2,...,n)
      可以看做是已知 B B B 事件发生,反过来看 B B B 是由各个条件 A j A_j Aj 引起的概率,相当于 “执果找因”
      在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值