gephi数据可视化
Gephi实操教程视频!!!!!!!!!!!!!!!
先来看一下最终的效果:
- 首先,上面的三张图片使用的数据都是同一组。但是通过软件可以达到不同的可视化效果。
- 其次,上面的数据有两种颜色,因此做的是两个区分。
- 最后,边还能进行有向图、无向图的区分操作,只是这里边太细了看不出来。
这篇文章就一步一步教大家如何实现上面的效果。
gephi数据可视化
1、软件安装
这里使用的是Gephi 0.10.1。【有需要安装包的三连后私你。】
安装包看这里!!!
2、数据处理与导入
- 这里只介绍一种导入的方法,就是导入节点表和边表。还有其他导入的方法比如共词矩阵表等可以自己去套索。
首先这里需要建立两张表,分别是节点表和边表。
- 节点表:就是建立节点的。
- 边表:就是建立边的。
-
节点表如上图所示,需要有三列。id、label、category
-
注意:label列不能有重复!可以使用excel数据当中的删除重复项操作
- 边表需要有四列,source、target、type、weight
- 注:列名都不要改变。
(1)导入节点
(2)导入边
这里有一点需要注意,在导入数据的时候,weight表示的是权重,需要把权重的类型设置成double,这样它才会把我们的权重识别进去,否则权重导入进去之后都变成1了。
(3)改变节点的颜色
(4)根据pagerank调整节点的大小
(5)根据pagerank调整边的粗细
(6)调整整体布局
选择自己喜欢的布局,个人觉得Yifan Hu比较好看。
3、计算中心度
(1)点度中心度
点度中心度:点度中心度是在网络分析中刻画节点中心度的最直接度量指标。一个节点的邻居节点越多,其节点度就越大、点度中心度越高,该节点在网络中就越重要。节点的点度中心度计算公式如下:
D C i DC_i DCi表示节点i的点度中心度; A i j A_{ij} Aij表示节点i是否可以不通过其他节点直接到达节点j,若可以,则 A i j A_{ij} Aij为 1,否则为 0;N表示总节点数。
(2)介数中心度
介数中心度:节点介数是指一个网络中通过某节点的最短路径条数。介数中心度以经过某个节点的最短路径数目来刻画节点重要度的指标。节点的介数中心度计算公式如下:
B C i BC_i BCi表示节点i的介数中心度; n s t i n_{st}^i nsti 表示经过节点i,且为最短路径的路径数量; g s t g_{st} gst表示连接s和t的最短路径的数量。
将节点i的介数中心度归一化,公式为:
N表示总节点数。
(3)接近中心度
接近中心度:接近中心度用于发现网络中高效传播信息的节点。一个节点到图中其他节点的最短距离越小,则其接近中心度越高。节点的介数中心度计算公式如下:
d i j d_{ij} dij表示节点i到另一节点j的距离。
将节点i的介数中心度归一化,公式为:
N表示总节点数。
(4)特征向量中心度
特征向量中心度将一个节点的中心度看作是相邻节点中心度的函数,且将所有邻居节点的贡献度视作一致。一个节点的邻居节点中心度越高,其特征向量中心度则越高。节点的特征向量中心度计算公式如下:
(5)计算各类中心度
(6)输出表格
注:
- Gephi无法自动更新数据,因此当我们更新某些节点或者将某些边删除之后,无法自动重新计算中心度。因此如如果需要修改计算结果,需要将列删除之后重新计算。
- Gephi无法计算点度中心度,只能计算度,这个时候需要自己导入excel表格之后手动运算。