算法
xxaxtt
这个作者很懒,什么都没留下…
展开
-
FM模型
参考FM: 推荐算法中的瑞士军刀原创 2021-01-19 12:35:07 · 92 阅读 · 0 评论 -
数据不平衡对树模型分裂的影响?
待解答?原创 2021-01-06 16:27:29 · 257 阅读 · 0 评论 -
FM为什么可以筛选出重要的交叉特征?
待解答?原创 2021-01-06 16:25:43 · 392 阅读 · 0 评论 -
深度学习如何计算特征重要度?
参考特征重要度暂未找到好的参考文献。测试时,依次将feat_i (i=1,…,n)置空,计算测试指标的变化ΔZ_i。可以用ΔZ_i衡量特征的重要度,ΔZ_i越大特征重要度越高。原创 2020-12-15 16:31:11 · 3084 阅读 · 1 评论 -
树模型知识点
参考Learning To Rank之LambdaMART的前世今生知识点XGboost和GBDT的区别?原创 2020-12-01 20:34:40 · 228 阅读 · 0 评论 -
排序算法
归并排序Java实现归并排序-有图有真相白话经典算法系列之五 归并排序的实现(C++)。实现时,提前申请好临时数据效率高,mergesort(int a[], int first, int last, int temp[])原创 2020-10-31 17:10:54 · 60 阅读 · 0 评论 -
神经网络相对树模型等有何优势?
特征自动抽取。减少手动特征构建工作量,减少对专家知识的依赖。例如bert可以学到文本的语义和语法;CNN可以自动学习图像特征。离散和连续特征都能处理。可以加入很多id类特征、类别特征等。对离散特征做embedding后,可以通过数据学到离散特征的语义向量,能表示离散特征的相对关系等,例如女装和男装的距离要小于女装和自行车的距离。而树模型对离散特征,基本只能按one-hot处理,无法表示离散特征的相对关系。...原创 2020-11-03 11:40:06 · 495 阅读 · 0 评论