推荐算法
xxaxtt
这个作者很懒,什么都没留下…
展开
-
树模型知识点
参考Learning To Rank之LambdaMART的前世今生知识点XGboost和GBDT的区别?原创 2020-12-01 20:34:40 · 228 阅读 · 0 评论 -
auc计算公式推导与Python代码实现
参考AUC计算方法与Python实现代码python计算auc指标代码def calAUC(prob,labels): f = list(zip(prob,labels)) rank = [values2 for values1,values2 in sorted(f,key=lambda x:x[0])] rankList = [i+1 for i in range(len(rank)) if rank[i]==1] posNum = 0 negNum = 0 for原创 2021-03-20 17:16:05 · 1377 阅读 · 2 评论 -
推荐系统评价指标
在线指标点击率。例如对电商平台,浏览率、购买率等。相关性标注。对推荐结果进行人工标注,观察推荐内容的相关性。多样性。离线指标PRAUCMAPNDCG原创 2020-10-16 09:11:32 · 283 阅读 · 0 评论 -
GPU提速案例
案例多分类问题。几十万样本,400维特征,目标类别约1000类,使用xgboost做多分类。使用64核cpu训练需要1.5周。使用单核GPU,型号T4,显存16G,训练时间减少至1.5小时。原创 2021-03-19 11:19:51 · 162 阅读 · 0 评论 -
deepFM工程化实践
参考奔奔:推荐算法注意点和DeepFM工程化实现石塔西:用TensorFlow实现支持多值、稀疏、共享权重的DeepFM蘑菇街首页推荐视频流——增量学习与wide&deepFM实践(工程+算法)蘑菇街首页推荐视频流——增量学习与wide&deepFM实践(工程+算法)...原创 2021-03-18 17:56:07 · 175 阅读 · 0 评论 -
id类特征如何做hash?
参考几种经典的hash算法。Java版的各种hash算法实现。算法乘法hash。jdk5.0里面的String类的hashCode()方法也使用乘法Hash,它使用的乘数是31。推荐的乘数还有:131, 1313, 13131, 131313等等。 static int bernstein(String key) { int seed = 31 int hash = 0; for (int i=0; i<key.length(); ++i) hash = seed*ha原创 2021-03-18 17:25:07 · 1431 阅读 · 2 评论 -
阿里推荐算法论文
参考DINDIENDSIN(Deep Session Interest Network )分享论文笔记:ESMM(阿里出品)KDD2020|阿里团队最新的多元兴趣推荐模型—ComiRec阿里推荐算法(MIND):基于动态路由的用户多兴趣网络阿里推荐算法(BST): 将Transformer用于淘宝电商推荐兴趣树(TDM)【阿里算法天才盖坤】解读阿里深度学习实践,CTR 预估、MLR 模型、兴趣分布网络等...原创 2021-03-15 17:08:41 · 268 阅读 · 0 评论 -
多目标学习
参考推荐精排模型之多目标模型多目标学习在推荐系统的应用(MMOE/ESMM/PLE)推荐系统中的多目标学习原创 2021-03-15 16:05:42 · 96 阅读 · 0 评论