【OneAPI】猫狗类别检测API

在这里插入图片描述

OneAPI新接口发布:猫狗类别检测

45种狗狗类别和15种猫猫类别检测。

API地址:POST https://oneapi.coderbox.cn/openapi/api/detect/dogcat

请求参数(body)

参数名类型必填含义说明
imageUrlstring图片地址网络图片地址,支持Base64。

响应参数

参数名类型必填含义说明
indexobject类别序号参照下方的对应的类别序号
 enstring目标英文名-
 cnstring目标中文名-
 confnumber置信度-
 boxesarray[array[number]]目标对象的矩形坐标-
sourceImagestring原始图片-
resultImagestring包含检测结果的图像-

响应示例

{
  "code": 0,
  "data": {
    "result": {
      "0": [
        {
          "boxes": [
            117,
            134,
            616,
            603
          ],
          "en": "Golden Retriever",
          "conf": "0.7628",
          "cn": "金毛"
        }
      ],
      "1": [
        {
          "boxes": [
            602,
            92,
            1130,
            717
          ],
          "en": "Husky",
          "conf": "0.3811",
          "cn": "哈士奇"
        }
      ]
    },
    "sourceImage": "https://file.coderbox.cn/oneapi/task/20240110/2cf871cd671d4d88a3b4fedd19145604.PNG",
    "resultImage": "https://file.coderbox.cn/oneapi/task/20240110/19e6aa3ca9434ff89b17d3e192fa810b.png"
  },
  "msg": "",
  "requestId": "25daff407d4341b"
}

类别对照表

类别序号英文名中文名
0Golden Retriever金毛
1Husky哈士奇
2Alaskan Malamute阿拉斯加
3Corgi柯基
4Bichon Frise比熊
5Yorkshire Terrier约克夏
6Chihuahua吉娃娃
7Basset Hound巴吉度
8Spotty Dog斑点狗
9Scottish Terrier苏格兰梗
10Pug巴哥
11Tibetan Mastiff藏獒
12German Shepherd德国牧羊犬
13Poodle贵宾犬
14West Highland White Terrier西高地白梗
15Chinese Shar Pei沙皮
16Papillon蝴蝶犬
17Labrador拉布拉多
18Akita秋田犬
19Shiba Inu柴犬
20Shih Tzu西施犬
21Border Collie边境牧羊犬
22Samoyed萨摩耶
23Teddy泰迪
24Chow Chow松狮犬
25Deerhound鹿犬
26Great Dane大丹犬
27French Bulldog法国斗牛犬
28Saint Bernard圣伯纳犬
29Rottweiler罗威纳犬
30Cocker Spaniel可卡犬
31German Doberman Pinscher杜宾犬
32Old English Sheepdog古牧
33Schnauzer雪纳瑞
34Bedlington Terriern贝灵顿猎犬
35Pomeranian博美犬
36Dachshun腊肠犬
37Beagle比格犬
38Bull Terrier牛头梗
39Shetland Sheepdog喜乐蒂
40Chinese Rural Dog中华田园犬
41Chinese Hound细犬
42Pekingese京巴
43Tibetan Spaniel西藏猎犬
44Chinese Crested Dog中国冠毛犬
45American Shorthair美短
46British Shorthair英短
47Persian波斯猫
48Birman伯曼猫
49Norwegian Forest Cat挪威森林猫
50Ragdoll布偶猫
51Himalayan喜马拉雅猫
52Toyger虎皮猫
53Scottish fold苏格兰折耳猫
54Dragen Li狸花猫
55Sphynx斯芬克斯猫(无毛猫)
56Chinese Pastoral Cat中华田园猫
57Garfield加菲猫
58Blue Cat蓝猫
59Cow Cat奶牛猫

OneAPI简介:OneAPI是一个简单、轻量的开放接口平台,提供常用场景的接口、以及图像识别等API服务,目前正在开发中,欢迎感兴趣的小伙伴一起参与开发。
更多API服务请查看:https://oneapi.coderbox.cn

### 回答1: 深度学习模型卷积神经网络(CNN)是一种广泛应用于图像识别、自然语言处理等领域的深度学习模型。下面我们以一个图像分类的例子来介绍如何使用CNN。 假设我们有一个包含10个不同种类的图像数据集。我们的目标是根据这些图像将它们分类到正确的类别中。 首先,我们需要导入必要的库和数据集。在本例中,我们将使用Keras库,它是一个高级神经网络API,可用于快速构建和训练深度神经网络。 ```python import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.datasets import mnist # 导入数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() ``` 在导入数据集之后,我们需要对数据进行预处理。首先,我们将将输入图像调整为相同的大小,例如28x28像素。然后,我们将将像素值缩放到0到1之间,这将有助于模型更快地收敛。 ```python # 图像大小调整为28x28像素,并将其转换为浮点数 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) input_shape = (28, 28, 1) # 将像素值缩放到0到1之间 x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 ``` 接下来,我们将构建CNN模型。在本例中,我们将使用两个卷积层和两个池化层。每个卷积层都将包含一些卷积滤波器,用于检测输入图像中的特征。池化层将减小输入图像的大小,并帮助减少过拟合。最后,我们将使用全连接层将输出与标签进行比较,并计算模型的损失和精度。 ```python # 构建CNN模型 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) ``` 最后,我们将使用训练数据对模型进行训练,并使用测试数据对其进行评估。 ```python # 将标签转换为one-hot编码 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test)) # 评估模型 score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 这就是一个简单的CNN模型的例子。通过对数据进行预处理、构建CNN模型并使用训练数据进行训练,我们可以有效地对图像进行分类。 ### 回答2: 学习深度学习模型卷积神经网络(CNN)的一个具体例子可以是使用CNN进行图像分类任务。以下是一个简单的用CNN进行猫狗图像分类的例子: 1. 数据准备:收集大量带有标签的猫和狗的图像数据集,并进行划分为训练集和验证集。 2. 数据预处理:对图像进行预处理,如大小归一化、颜色通道转换等,以便输入到CNN模型中。 3. 构建CNN模型:使用Python编程语言和深度学习框架,如Keras或PyTorch,构建一个适合图像分类的CNN模型。 4. 模型训练:使用训练集的图像和对应的标签数据,训练CNN模型。通过反向传播优化模型的权重和偏差,使其逐渐减小损失函数。 5. 模型调优:根据模型在验证集上的表现进行模型调优,如调整层数、卷积核大小、池化操作等,以提高模型的准确性和鲁棒性。 6. 模型评估:使用测试集的图像和标签数据,评估CNN模型在猫狗图像分类任务上的性能,如准确率、召回率、精确率等。 7. 预测新图像:使用已训练好的CNN模型,对新输入的图像进行预测,判断是猫还是狗。 通过以上步骤,可以建立一个基本的CNN模型来进行猫狗图像分类。当然,在实际应用中,还有很多可以改进的地方,如数据增强、使用预训练的模型、引入正则化技术等。这个例子只是一个简单的介绍,深入学习CNN还需要更多的实践和研究。 ### 回答3: 深入学习模型卷积神经网络(CNN)是一种经常用于图像识别和计算机视觉任务的机器学习算法。这个网络的架构包含了多层卷积层和池化层,以及全连接层。下面是一个具体的例子,展示了如何构建和训练一个基本的CNN模型来识别手写数字: 1. 数据准备:首先,我们需要获取一个手写数字的数据集,比如MNIST数据集。该数据集包含了60000个训练样本和10000个测试样本,每个样本都是一个28x28的灰度图像。 2. 网络架构定义:接下来,我们定义CNN模型的架构。我们可以选择一个包含卷积层、池化层和全连接层的简单架构。一个典型的例子是:输入图像 -> 卷积层 -> 池化层 -> 卷积层 -> 池化层 -> 全连接层 -> 输出层。 3. 模型训练:我们将训练集输入模型,并通过反向传播算法进行权重更新。在训练过程中,我们可以使用基于梯度下降的优化算法,如Adam或SGD,来优化模型的性能。此外,还可以采用数据增强技术,如旋转、平移或缩放图像,来增加训练集的多样性。 4. 模型评估:在训练完模型之后,我们使用测试集对其进行评估。通过计算模型在测试集上的准确率、精度、召回率等指标,来评估其在手写数字识别任务上的性能。 5. 模型优化:如果模型的性能还不够理想,我们可以通过调整网络架构、增加模型复杂度、修改超参数等方式来进行优化。此外,还可以尝试其他常用的深度学习技术,如Dropout、Batch Normalization等。 总而言之,深入学习模型卷积神经网络(CNN)是一种强大的图像识别算法。通过构建合适的网络架构、训练和优化模型,我们可以获得较高的准确率和性能。以上是一个简单的例子,实际应用中还有更多的技巧和方法可供尝试和探索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勇敢牛牛_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值