时钟频率(HZ)与数据传输速率(bit/s)的关系

时钟频率(HZ)与数据传输速率(bit/s)两者是相同的概念。
举例:IIC传输位速率在标准模式下可达100kbit/s,其中100kbit/s 是指1秒钟传输100kbit。1个时钟脉冲只能传输1bit数据。1秒中内要传输100kbit数据,则需要100k个时钟脉冲。每个时钟脉冲的周期 T=1/100 000 = 10us。

方波在1秒钟内的重复变化次数称为信号的“频率”,用F表示;而把信号波形变化一次所需的时间称作“周期”,用T表示,以秒为单位。频率和周期有如下的关系:
F=1/T
因此,如果时钟脉冲周期为10us,即0.00001S 时,对应的时钟脉冲频率计算如下:
F=1/T = 1/0.00001S = 100 000 HZ = 100KHZ。
结论:HZ和bit/s是一个相同的概念。时钟周期为1HZ,则传输数据的速率为1bit/s;时钟周期为100KHZ,则传输数据的速率为100kbit/s。
 

### 计算给定时钟频率下的波特率时钟周期 对于50 MHz系统时钟频率下9600 bps波特率的时钟周期计算,可以按照以下方法: 在FPGA中实现特定波特率时,需要通过分频来获得合适的比特时间。具体到此案例中,即是从50 MHz的系统时钟得到适合于9600 bps的数据传输速率。 首先,确定单个时钟周期的时间长度。由于1 Hz等于每秒一次循环,则有: \[ \text{时钟周期} = \frac{1}{\text{时钟频率}} \] 因此,在50 MHz的情况下, \[ \text{时钟周期} = \frac{1}{50,000,000} 秒 ≈ 20 纳秒 (ns) \][^2] 接着,为了达到目标波特率(这里为9600),需找到能够整除该波特率并接近理想值的一个合适比例因子k,使得实际产生的波特率为\( F_{baud\_actual}= \frac{\text{System Clock Frequency}}{k}\),其中 \( k=\frac{\text{System Clock Frequency}}{Desired Baud Rate} \)。 针对本例而言, \[ k= \frac{50,000,000}{9600}≈5208.33 \] 取最接近这个数值的整数部分作为计数值,也就是5208。这意味着每当累积了这么多时钟脉冲之后就发送一位数据位。此时对应的波特率周期大约为: \[ T_{bit} = k * T_{clock} = 5208*20 ns = 104167 ns \approx 104 us \] 这表示在一个完整的比特时间内会有约104微秒的时间间隔。 ```python # Python code to calculate the bit period based on system clock and desired baud rate. def calc_bit_period(sys_clk_freq_hz, baud_rate_bps): clk_period_ns = 1e9 / sys_clk_freq_hz # Calculate clock period in nanoseconds count_value = int(round(sys_clk_freq_hz / baud_rate_bps)) # Get integer division value bit_period_us = round(count_value * clk_period_ns / 1000, 2) # Convert result into microseconds with two decimal places return f"The calculated bit period is {bit_period_us} μs." print(calc_bit_period(50_000_000, 9600)) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值