深度学习
wxn704414736
这个作者很懒,什么都没留下…
展开
-
DBM 与 DBN 的区别
转自http://m.blog.csdn.net/Losteng/article/details/51023175转载 2017-12-13 14:42:05 · 2014 阅读 · 0 评论 -
基于深度神经网络特征提取的文本无关的说话人识别
部分转自https://blog.csdn.net/monsieurliaxiamen/article/details/79638227对文章“Deep neural network embeddings for text-independent speaker verification” 的解读。1. 概要 在实际应用中,往往被测试者或被验证者的语音长度相对较短,若使用传统的PLD...转载 2018-08-25 14:07:52 · 1272 阅读 · 1 评论 -
WaveNet原理和代码分析
转自https://blog.csdn.net/zsssrs/article/details/79892523转载 2018-08-06 20:59:55 · 1928 阅读 · 2 评论 -
深度学习入门论文(语音识别领域)
转自https://blog.csdn.net/youyuyixiu/article/details/53764218介绍深度学习在语音识别领域应用的6篇入门论文:Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups (2012年...转载 2018-07-29 18:47:37 · 6567 阅读 · 1 评论 -
深度学习AlexNet模型详细分析
转自https://blog.csdn.net/zyqdragon/article/details/72353420Alex在2012年提出的alexnet网络结构模型引爆了神经网络的应用热潮,并赢得了2012届图像识别大赛的冠军,使得CNN成为在图像分类上的核心算法模型。接下来本文对该网络配置结构中各个层进行详细的解读(训练阶段):注:下述关于卷积核的尺寸来自于Alex在2012年发表的经典论文...转载 2018-07-11 10:45:03 · 4544 阅读 · 0 评论 -
三种梯度下降的方式:批量梯度下降、小批量梯度下降、随机梯度下降
转自https://blog.csdn.net/uestc_c2_403/article/details/74910107在机器学习领域中,梯度下降的方式有三种,分别是:批量梯度下降法BGD、随机梯度下降法SGD、小批量梯度下降法MBGD,并且都有不同的优缺点。下面我们以线性回归算法(也可以是别的算法,只是损失函数(目标函数)不同而已,它们的导数的不同,做法是一模一样的)为例子来对三种梯度下降法进...转载 2018-04-06 10:05:04 · 1095 阅读 · 0 评论 -
rbm
1 预备知识 详见https://blog.csdn.net/itplus/article/details/191689372 网络结构 详见https://blog.csdn.net/itplus/article/details/191689673 能量函数与概率分布 详见https://blog.csdn.net/itplus/article/details/19168989...转载 2018-03-28 14:00:04 · 498 阅读 · 0 评论 -
机器学习中正则化项L1和L2的直观理解
详见https://blog.csdn.net/jinping_shi/article/details/52433975转载 2018-04-14 18:40:54 · 145 阅读 · 0 评论 -
DBN
转自http://blog.csdn.net/u013146742/article/details/52400930转载 2018-01-02 17:16:20 · 429 阅读 · 0 评论 -
理解 LSTM 网络
转自https://www.jianshu.com/p/9dc9f41f0b29Recurrent Neural Networks人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考。我们的思想拥有持久性。传统的神经网络并不能做到这点,看起来也...转载 2018-09-19 09:39:40 · 402 阅读 · 0 评论