输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)
对于两棵二叉树来说,要判断B是不是A的子结构,
- 首先第一步在树A中查找与B根节点的值一样的节点。
- 通常对于查找树中某一个节点,我们都是采用递归的方法来遍历整棵树。
- 第二步就是判断树A中以R为根节点的子树是不是和树B具有相同的结构。
这里同样利用到了递归的方法,如果节点R的值和树的根节点不相同,则以R为根节点的子树和树B肯定不具有相同的节点;
如果它们值是相同的,则递归的判断各自的左右节点的值是不是相同。
递归的终止条件是我们达到了树A或者树B的叶节点。
有地方要重点注意,DoesTree1haveTree2()函数中的两个 if 判断语句 不能颠倒顺序 。
因为如果颠倒了顺序,会先判断pRoot1 是否为None, 其实这个时候,pRoot1 的节点已经遍历完成确认相等了,但是这个时候会返回 False,判断错误。
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};*/
class Solution {
public:
bool isHaveSubtree(TreeNode* pRoot1,TreeNode* pRoot2)
{
// 如果pRoot2已经遍历完了都能对应上,返回true
if(!pRoot2)
return true;
// 如果pRoot2还没遍历完,pRoot1却遍历完,返回false
if(!pRoot1)
return false;
// 如果其中有一个点没有对应上,返回false
if(pRoot1->val!=pRoot2->val)
return false;
// 如果根结点对应上,那就分别子节点里去匹配
return isHaveSubtree(pRoot1->left,pRoot2->left) && isHaveSubtree(pRoot1->right,pRoot2->right);
}
bool HasSubtree(TreeNode* pRoot1,TreeNode* pRoot2)
{
// 边界条件
if(!pRoot1 || !pRoot2)
return false;
bool res=false;
if(pRoot1 && pRoot2)
{
// 找到了对应的pRoot2根结点的点
if(pRoot1->val==pRoot2->val)
res=isHaveSubtree(pRoot1,pRoot2);
// 如果找不到,那么就再到pRoot1的左儿子中寻找当做起点
if(!res)
res=isHaveSubtree(pRoot1->left,pRoot2);
// 如果还找不到,那么就再到pRoot1的右儿子中寻找当做起点
if(!res)
res=isHaveSubtree(pRoot1->right,pRoot2);
}
return res;
}
};