机器学习-线性回归—随机梯度下降、闭式解(解析解)实现

本文介绍了线性回归的基本原理和应用,通过实验对比了随机梯度下降与闭式解两种方法在求解线性回归参数时的表现。实验使用Housing数据集,数据集被切分为训练集和验证集。结果显示,随机梯度下降适合大规模数据集,而闭式解在小数据集上也能得到良好效果。
摘要由CSDN通过智能技术生成

I.摘要

回归regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。在这里通过随机梯度下降与闭式解,得到线性回归的参数预测

II.介绍

输入特征为13,输出预测值为1。

首先线性回归基于几个简单的假设:

  • 假设自变量x和因变量y之间的关系是线性的, y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声
  • 假设任何噪声都比较正常,如噪声遵循正态分布。

通过线性回归的闭式解与随机梯度下降的方式,得到了模型的参数估计值。

III.方法和理论

  • 解析解

将偏置b合并到参数w中,合并方法是在包含所有参数的矩阵中附加一列。预测问题是最小化这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小点。 将损失关于w的导数设为0,得到解析解:

  • 随机梯度下降

梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值) 关于模型参数的导数(在这里也可以称为梯度)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值