I.摘要
回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。在这里通过随机梯度下降与闭式解,得到线性回归的参数预测
II.介绍
输入特征为13,输出预测值为1。
首先线性回归基于几个简单的假设:
- 假设自变量x和因变量y之间的关系是线性的, 即y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声
- 假设任何噪声都比较正常,如噪声遵循正态分布。
通过线性回归的闭式解与随机梯度下降的方式,得到了模型的参数估计值。
III.方法和理论
-
解析解
将偏置b合并到参数w中,合并方法是在包含所有参数的矩阵中附加一列。预测问题是最小化。这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小点。 将损失关于w的导数设为0,得到解析解:
-
随机梯度下降
梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值) 关于模型参数的导数(在这里也可以称为梯度)。