机器学习实战——支持向量机

本文深入探讨了支持向量机(SVM)的概念,包括模型介绍、几何间隔和函数间隔、SMO算法及其在sklearn中的实现。SVM通过寻找最优超平面最大化几何间隔来进行分类,SMO算法用于解决SVM的优化问题。在sklearn中,SVC、NuSVC和LinearSVC是SVM的分类实现,而SVR、NuSVR和LinearSVR用于回归。参数如C、kernel、gamma等对模型性能有重要影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习实战——支持向量机

1 模型介绍

假设给定一个样本集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } , y i ∈ { 1 , − 1 } D=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\},y_i\in\{1,-1\} D={ (x1,y1),(x2,y2),...,(xm,ym)},yi{ 1,1},在下图中,我们可以找到很多把样本划分为 { 1 , − 1 } \{1,-1\} { 1,1} 两类的超平面,但没办法判定哪一个是最好的。支持向量机的分类模型就是在样本集 D D D 中找到最合适的分离超平面,使模型具有较高的分类准确率。分离超平面可以用如下的公式表示:
在这里插入图片描述
则样本空间中任意一点到分离超平面的距离可以表示成如下形式:
在这里插入图片描述
我们可以把分类问题转化为求点到直线的距离问题,距离超平面越远的点越容易被正确划分,可以进一步把问题转为求距离分离超平面最近的点的最大距离。
函数间隔:定义超平面 ( w , b ) (w,b) (w,b) 关于样本点 ( x i , y i ) (x_i,y_i) (xi,yi) 的函数间隔为 y i ( w T x i + b ) y_i(w^Tx_i+b) y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值