肥宅快乐还是不快乐,拓展欧几里得,exgcd???bfs

扩展欧几里德算法

先介绍什么叫做欧几里德算法

有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的naïve ,那怎么做?

欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了,这就是欧几里德算法,用 C++ 语言描述如下:



由于是用递归写的,所以看起来很简洁,也很好记忆。那么什么是扩展欧几里德呢?

现在我们知道了 a 和 b 的最大公约数是 gcd ,那么,我们一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 这是一个不定方程(其实是一种丢番图方程),有多解是一定的,但是只要我们找到一组特殊的解 x0 和 y0 那么,我们就可以用 x0 和 y0 表示出整个不定方程的通解:

    x = x0 + (b/gcd)*t

    y = y0 – (a/gcd)*t

为什么不是:

    x = x0 + b*t

    y = y0 – a*t

这个问题也是在今天早上想通的,想通之后忍不住喷了自己一句弱逼。那是因为:

b/gcd 是 b 的因子, a/gcd 是 a 的因子是吧?那么,由于 t的取值范围是整数,你说 (b/gcd)*t 取到的值多还是 b*t 取到的值多?同理,(a/gcd)*t 取到的值多还是 a*gcd 取到的值多?那肯定又要问了,那为什么不是更小的数,非得是 b/gcd 和a/gcd ?

注意到:我们令 B = b/gcd , A = a、gcd , 那么,A 和 B 一定是互素的吧?这不就证明了 最小的系数就是 A 和 B 了吗?要是实在还有什么不明白的,看看《基础数论》(哈尔滨工业大学出版社),这本书把关于不定方程的通解讲的很清楚

现在,我们知道了一定存在 x 和 y 使得 : a*x + b*y = gcd , 那么,怎么求出这个特解 x 和 y 呢?只需要在欧几里德算法的基础上加点改动就行了。

我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd

当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?

我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:

    gcd = b*x1 + (a-(a/b)*b)*y1

        = b*x1 + a*y1 – (a/b)*b*y1

        = a*y1 + b*(x1 – a/b*y1)

对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?

这里:

    x = y1

    y = x1 – a/b*y1

以上就是扩展欧几里德算法的全部过程,依然用递归写:



依然很简短,相比欧几里德算法,只是多加了几个语句而已。

这就是理论部分,欧几里德算法部分我们好像只能用来求解最大公约数,但是扩展欧几里德算法就不同了,我们既可以求出最大公约数,还可以顺带求解出使得: a*x + b*y = gcd 的通解 x 和 y

扩展欧几里德有什么用处呢?

求解形如 a*x +b*y = c 的通解,但是一般没有谁会无聊到让你写出一串通解出来,都是让你在通解中选出一些特殊的解,比如一个数对于另一个数的乘法逆元

什么叫乘法逆元?



这里,我们称 x 是 a 关于 m 的乘法逆元

这怎么求?可以等价于这样的表达式: a*x + m*y = 1

看出什么来了吗?没错,当gcd(a , m) != 1 的时候是没有解的这也是 a*x + b*y = c 有解的充要条件: c % gcd(a , b) == 0

接着乘法逆元讲,一般,我们能够找到无数组解满足条件,但是一般是让你求解出最小的那组解,怎么做?我们求解出来了一个特殊的解 x0 那么,我们用 x0 % m其实就得到了最小的解了。为什么?

可以这样思考:

x 的通解不是 x0 + m*t 吗?

那么,也就是说, a 关于 m 的逆元是一个关于 m 同余的,那么根据最小整数原理,一定存在一个最小的正整数,它是 a 关于m 的逆元,而最小的肯定是在(0 , m)之间的,而且只有一个,这就好解释了。

可能有人注意到了,这里,我写通解的时候并不是 x0 + (m/gcd)*t ,但是想想一下就明白了,gcd = 1,所以写了跟没写是一样的,但是,由于问题的特殊性,有时候我们得到的特解 x0 是一个负数,还有的时候我们的 m 也是一个负数这怎么办?

当 m 是负数的时候,我们取 m 的绝对值就行了,当 x0 是负数的时候,他模上 m 的结果仍然是负数(在计算机计算的结果上是这样的,虽然定义的时候不是这样的),这时候,我们仍然让 x0 对abs(m) 取模,然后结果再加上abs(m) 就行了,于是,我们不难写出下面的代码求解一个数 a 对于另一个数 m 的乘法逆元:

肥宅不快乐
描述

Wh学长喝完了快乐水之后意识到该去减肥跑步了,然后去了操场,发现lly 和 hwj已经在跑步了,lly已经跑了b 米,然后每跑a米停下休息一下,忽视休息时间,hwj已经跑了d米,每跑c米休息一下,wh想在他们跑到同一长度并且在休息的时候加入他们,请问最少是在多少米处wh可以加入他们

输入

第一行输入两个整数a,b,第一行输入两个整数c,d(a,b,c,d < 5*10^{8}a,b,c,d<5∗10
8
)

输出

最短米处(如果没有,wh就不用跑了,输出happy)

输入样例 1

20 2
9 19
输出样例 1

82
提示

y1 = a * x1 + b

y2 = c * x2 + d

求 y1 = y2 的最小整数解

exgcd

#include<iostream>
using namespace std;
typedef long long l;
void swap(l *x,l *y){
	l temp;
	temp=*x;
	*x=*y;
	*y=temp;
}
l exgcd(l a,l b,l &x,l &y){
	if(b==0){
		x=1;
		y=0;
		return a;
	}
	l ans=exgcd(b,a%b,x,y);
	l temp=x;
	x=y;
	y=temp-a/b*y;
	return ans;
}
int main(){
	l a,b,c,d,temp,x=0,y=0;
	cin>>a>>b>>c>>d;
	if(d<b){
		swap(&a,&c);
		swap(&b,&d);
	}
	l n=exgcd(a,c,x,y);
	if((d-b)%n==0){
		l x1,c1=c/n;
		x1=(x+c1)*((d-b)/n);
		x1=(x1%c1+c1)%c1;
		cout<<abs(x1)*a+b;
	}
	else
		cout<<"happy";

return 0;
}

肥宅快乐水
描述

Wh学长有一瓶肥宅快乐水,这个瓶的容量是a 升,但是wh在回去的路上被lly 和 hwj 发现了他的肥宅快乐水,于是他们准备瓜分wh的快乐水,他们两个手上持有容量为b 和c 升的 杯子,他们的杯子内已有的快乐水为 x,y,z。他们想分出一瓶f升的快乐水给wh,现在你来帮他们算算能不能按照要求分(只要分出一个杯子里有f升就行,wh并不介意)

输入

第一行输入a,b,c三个值(满足a>b>c )第二行输入x,y,z三个值第三行输入f值

输出

能分就输出“Yes”,不能就输出“No”

输入样例 1

12 8 5
12 0 0
6
输出样例 1

Yes
提示

每次倒入瓶子的时候是无法精准控制倒入多少的,不可以从装满12升的瓶子往8升的空瓶子里面倒入2升

上述例子详解:

4 8 0

4 3 5

9 3 0

9 0 3

1 8 3

1 6 5

bfs(模拟会超时)

#include<iostream>
#include<stdio.h>
using namespace std;
int A,B,C;
void A_to_B(int &a,int &b,int &c)
{
        if(a>=B)
        {
                a=a-B;
                b=B;
        }
        else
        {
                b=a;
                a=0;
        }
 
        cout<<a<<' '<<b<<' '<<c<<endl;
}
void B_to_C(int &a,int &b,int &c)
{
        if(b>=C)
        {
                b=b-(C-c);
                c=C;
        }
 
        else
                {
                        c=b;
                        b=0;
                }
        cout<<a<<' '<<b<<' '<<c<<endl;
}
 
void C_to_A(int &a,int &b,int &c)
{
        a=a+c;
        c=0;
        cout<<a<<' '<<b<<' '<<c<<endl;
}
 
 
int main()
{
        int a,b,c,t;
        int s_a,s_b,s_c;
        scanf("%d,%d,%d,%d,%d,%d,%d",&A,&B,&C,&a,&b,&c,&t);
        s_a=a;
        s_b=b;
        s_c=c;
        while(a!=t&&b!=t&&c!=t)
        {
                if(b==0)
                        A_to_B(a,b,c);
                if(c==C)
                        C_to_A(a,b,c);
                else if(b!=0)
                        B_to_C(a,b,c);
                if(a==s_c&&b==s_b&&c==s_c)
                {
                        cout<<"不可能"<<endl;
                        break;
                }
        }
        return 0;
}

gcd

#include<iostream>
using namespace std;
typedef long long l;
l gcd(l a,l b){
	if(b==0)
		return a;
	l d=gcd(b,a%b);
	return d;
}
int main(){
	l a,b,c,x,y,z,f;
	cin>>a>>b>>c>>x>>y>>z>>f;
	
	if(f>(x+y+z)||f>a)
		cout<<"No"<<endl;
	else{
		l n=gcd(b,c);
		if(f%n==0)
			cout<<"Yes"<<endl;
		else
			cout<<"No"<<endl;
	}

return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小猪今天有学习吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值