《Python机器学习及实践:从零开始通往Kaggle竞赛之路》第2章 基础篇 学习笔记(十三)2.2.2.1主成分分析总结

本文是《Python机器学习及实践》书中关于主成分分析(PCA)的学习笔记,介绍了PCA的原理、数据描述、编程实践、性能测评和特点。PCA在高维特征降维中有重要作用,通过PCA可以降低数据维度,同时保持数据多样性,常用于图形识别。文中以手写体数字图像为例,展示了PCA处理后的二维分布,并比较了原始和降维特征在支持向量机模型上的性能差异。
摘要由CSDN通过智能技术生成

目录

2.2.2.1主成分分析

0、引言

1、模型介绍

2、数据描述

3、编程实践

4、性能测评

5、特点分析


2.2.2.1主成分分析

0、引言

特征降维是无监督学习的另一个应用,目的有二:

其一,在实际项目中遭遇特征维度非常高的训练样本,而往往又无法借助自己的领域知识人工构建有效特征;

其二,在数据表现方面,无法用肉眼观测超过三个维度的特征。

因此,特征降维不仅重构了有效的低维度特征向量,同时也为数据展现提供了可能。在特征降维的方法中,主成分分析(Principal Component Analysis)是最为经典和实用的特征降维技术,特别在辅助图形识别方面有突出的表现。

1、模型介绍

首先思考两个小例子,这也是解释低维度、信息冗余和PCA功能的。

有一组2\times 2的数据[(1,2),(2,4)],假设这两个数据都反映到一个类别(分类)或者一个类簇(聚类)。如果学习模型是线性模型,那么这两个数据其实只能帮助权重参数更新一次,因为它们线性相关,所有的特征数值都只是扩张了相同的倍数;如果使用PCA分析的话,这个矩阵的“秩”是1,也就是说,在多样性程度上,这个矩阵只有一个自由度。

# 代码51:线性相关矩阵秩计算样例
# 导入numpy工具包。
import numpy as np

# 初始化一个2*2的线性相关矩阵。
M = np.array([[1, 2], [2, 4]])
# 计算2*2线性相关矩阵的秩。
np.linalg.matrix_rank(M, tol=None)
print(np.linalg.matrix_rank(M, tol=None))

再比如,图2-16所示的几张花洒图片。是试图将三维物体重新映射在二维照片的过程。在这个过程中,可以有无数种映射的角度。但是,可以通过肉眼判断出,最后一张的角度最为合适也最容易分辨。

其实,也可以把PCA当做特征选择,只是和普通理解的不同,这种特征选择是首先将原来的特征空间做了映射,使得新的映射后特征空间数据彼此正交

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值