《Python机器学习及实践:从零开始通往Kaggle竞赛之路》第3章 进阶篇 学习笔记(三)3.1.2.1欠拟合与过拟合总结

本文是《Python机器学习及实践》第3章的进阶学习笔记,聚焦欠拟合与过拟合。通过线性、2次和4次多项式回归模型,探讨模型复杂度与泛化力的关系。线性回归在训练数据上R-squared值为0.910,2次多项式提升至0.982,而4次多项式在训练数据上完全拟合但可能导致过拟合。正则化方法如范数正则化有助于防止过拟合,平衡模型性能与泛化力。
摘要由CSDN通过智能技术生成

目录

3.1.2.1欠拟合与过拟合

0、引言

1、拟合

2、编程实践

(1)线性回归模型

(2)2次多项式回归模型

(3)4次多项式回归模型

3、性能测评

4、特点分析


3.1.2.1欠拟合与过拟合

0、引言

任何机器学习模型在训练集上的性能表现,都不能作为其对未知测试数据预测能力的评估。

首先阐述模型复杂度与泛化力的关系;紧接着,分别介绍如何使用L_{1}范数正则化与L_{2}范数正则化这两种正则化(Regularization)来加强模型的泛化力,避免模型参数过拟合(Overfitting)

1、拟合

所谓拟合,是指机器学习模型在训练的过程中,通过更新参数,使得模型不断契合可观测数据(训练集)的过程。

2、编程实践

使用一个“比萨饼价格预测“的例子来说明。如表3-1所示,美国一家比萨饼店出售不同尺寸的比萨,其中每种直径都对应一个报价。所要做的,就是设计一个学习模型,可以有效地根据表3-2中比萨的直径特征来预测售价。

表3-1 美国某比萨饼店已知训练数据
Training InstanceDiameter(in inches)Price(in U.S. dollars)
167
289
31013
41417.5
51818
表3-2 美国某比萨饼店未知测试数据
Testing InstanceDiameter(in inches)Price(in U.S. dollars)
16?
28?
311?
416?

目前所知,共有5组训练数据、4组测试数据,并且其中测试数据的比萨报价未知。

(1)线性回归模型

根据经验,如果只考虑比萨的尺寸与售价的关系,那么使用线性回归模型比较直观。

# 代码60:使用线性回归模型在比萨训练样本上进行拟合
# 输入训练样本的特征以及目标值,分别存储在变量X_train与y_train之中。
X_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]]

# 从sklearn.linear_model中导入LinearRegression。
from sklearn.linear_model import LinearRegression

# 使用默认配置初始化线性回归模型。
regressor = LinearRegression()
# 直接以披萨的直径作为特征训练模型。
regressor.fit(X_train, y_train)

# 导入numpy并且重命名为np。
import numpy as np

# 在x轴上从0至25均匀采样100个数据点。
xx = np.linspace(0, 26, 100)
xx = xx.reshape(xx.shape[0], 1)
# 以上述100个数据点作为基准,预测回归直线。
yy = regressor.predict(xx)

# 对回归预测到的直线进行作图。
import matplotlib.pyplot as plt

plt.scatter(X_train, y_train)
plt1, = plt.plot(xx, yy, label="Degree=1")
plt.axis([0, 25, 0, 25])
plt.xlabel('Diameter of Pizza')
plt.ylabel('Price of Pizza')
plt.legend(handles=[plt1])
plt.show()

# 输出线性回归模型在训练样本上的R-squared值。
print('The R-squared value of Linear Regressor performing on the training data is', regressor.score(X_train, y_train))

本地输出:

The R-squared value of Linear Regressor performing on the training data is 0.9100015964240102

结论:根据线性回归模型在训练集上的表现(R-squared值为0.9100),进一步猜测,也许比萨饼的面积与售价的线性关系更加明显。

(2)2次多项式回归模型

试图将原特征升高一个维度,使用(2次)多项式回归(Polynominal Regression)对训练样本进行拟合。

# 代码61:使用2次多项式回归模型在比萨训练样本上进行拟合
# 从sklearn.preproessing中导入多项式特征产生器。
from sklearn.preprocessing import PolynomialFeatures

# 使用PolynominalFeatures(degree=2)映射出2次多项式特征,存储在变量X_train_poly2中。
poly2 = PolynomialFeatures(degree=2)
X_train_poly2 = poly2.fit_transform(X_train)

# 以线性回归器为基础,初始化回归模型。尽管特征的维度有提升,但是模型基础仍然是线性模型。
regressor_poly2 = LinearRegression()

# 对2次多项式回归模型进行训练。
regressor_poly2.fit(X_train_poly2, y_train)

# 从新映射绘图用x轴采样数据。
xx_poly2 = poly2.transform(xx)

# 使用2次多项式回归模型对应x轴采样数据进行回归预测。
yy_poly2 = regressor_poly2.predict(xx_poly2)

# 分别对训练数据点、线性回归直线、2次多项式回归曲线进行作图。
plt.scatter(X_train, y_train)

plt1, = plt.plot(xx, yy, label='Degree=1')
plt2, = plt.plot(xx, yy_poly2, label='Degree=2')

plt.axis([0, 25, 0, 25])
plt.xlabel('Diameter of Pizza')
plt.ylabel('Price of Pizza')
plt.legend(handles=[plt1, plt2])
plt.show()

# 输出2次多项式回归模型在训练样本上的R-squared值。
print('The R-squared value of Polynominal Regressor (Degree=2) performing on the training data is', regressor_poly2.score(X_train_poly2, y_train))

备注:尽管在上面代码中依然使用线性回归器作为模型基础,但是由于将特征上升到多项式层面,因此通常称这类模型为多项式回归。

本地输出:

The R-squared value of Polynominal Regressor (Degree=2) performing on the training data is 0.9816421639597427

结论:果然,在升高了特征维度之后,2次多项式回归模型在训练样本上的性能表现更加突出,R-squared值从0.910上升到0.982。2次多项式回归曲线(橙色)比起线性回归直线(蓝色),对训练数据的拟合程度增加了许多。

(3)4次多项式回归模型

更加大胆地进一步升高特征维度,增加到4次多项式。

# 代码62:使用4次多项式回归模型在比萨训练样本上进行拟合
# 从sklearn.preprocessing导入多项式特征生成器。
from sklearn.preprocessing import PolynomialFeatures

# 初始化4次多项式特征生成器。
poly4 = PolynomialFeatures(degree=4)
X_train_poly4 = poly4.fit_transform(X_train)

# 使用默认配置初始化4次多项式回归器。
regressor_poly4 = LinearRegression()
# 对4次多项式回归模型进行训练。
regressor_poly4.fit(X_train_poly4, y_train)

# 从新映射绘图用x轴采样数据。
xx_poly4 = poly4.transform(xx)
# 使用4次多项式回归模型对应x轴采样数据进行回归预测。
yy_poly4 = regressor_poly4.predict(xx_poly4)

# 分别对训练数据点、线性回归直线、2次多项式以及4次多项式回归曲线进行作图。
plt.scatter(X_train, y_train)
plt1, = plt.plot(xx, yy, label='Degree=1')
plt2, = plt.plot(xx, yy_poly2, label='Degree=2')

plt4, = plt.plot(xx, yy_poly4, label='Degree=4')
plt.axis([0, 25, 0, 25])
plt.xlabel('Diameter of Pizza')
plt.ylabel('Price of Pizza')
plt.legend(handles=[plt1, plt2, plt4])
plt.show()

print('The R-squared value of Polynominal Regressor (Degree=4) performing on the training data is', regressor_poly4.score(X_train_poly4, y_train))

本地输出:

The R-squared value of Polynominal Regressor (Degree=4) performing on the training data is 1.0

结论:4次多项式曲线几乎完全拟合了所有的训练数据点,对应的R-squared值也为1.0。

3、性能测评

如果这时觉得已经找到了完美的模型,那么显然是高兴过早了。

表3-3揭示了测试比萨的真实价格。

表3-3 美国某比萨饼店真实测试数据
Testing InstanceDiameter(in inches)Price(in U.S. dollars)
168
2812
31115
41618

评估上述3种模型在测试集上的表现,并将输出对比之前在训练数据上的拟合情况,制成表3-4。

# 代码63:评估3种回归模型在测试数据集上的性能表现
# 准备测试数据。
X_test = [[6], [8], [11], [16]]
y_test = [[8], [12], [15], [18]]

# 使用测试数据对线性回归模型的性能进行评估。
regressor.score(X_test, y_test)

# 使用测试数据对2次多项式回归模型的性能进行评估。
X_test_poly2 = poly2.transform(X_test)
regressor_poly2.score(X_test_poly2, y_test)

# 使用测试数据对4次多项式回归模型的性能进行评估。
X_test_poly4 = poly4.transform(X_test)
regressor_poly4.score(X_test_poly4, y_test)

本地输出:

0.809726797707665
0.8675443656345073
0.8095880795766807
表3-4 美国某比萨饼店真实测试数据
特征多项式次数训练集R-squared值测试集R-squared值
Degree=10.91000.8097
Degree=20.98160.8675
Degree=41.00000.8096

结论:最终的结果却令人咋舌:当模型复杂度很低时,模型不仅没有对训练集上的数据有良好的拟合状态,而且在测试集上也表现平平,这种情况叫欠拟合(Underfitting);但是,当一味追求很高的模型复杂度,尽管模型几乎完全拟合了所有的训练数据,但模型也变得非常波动,几乎丧失了对未知数据的预测能力,这种情况叫过拟合(Overfitting)。这两种情况都是缺乏模型泛化力的表现。

4、特点分析

由此可见,虽然不断追求更好的模型泛化力,但是因为未知数据无法预测,所以又期望模型可以充分利用训练数据,避免欠拟合。这就要求在增加模型复杂度、提高在可观测数据上的性能表现的同时,又兼顾模型的泛化力,防止发生过拟合情况。为了平衡这两难的选择,通常采用两种模型正则化的方法,分别是L_{1}范数正则化和L_{2}范数正则化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值