最新论文阅读(3)

Gated Feedback Refinement Network for Dense Image Labeling

- 2017CVPR  
- G-FRNet   
- 曼尼托巴大学【美】 

  GFRNet进行粗略预测,然后在细化阶段高效地整合局部和全球上下文信息,逐步细化细节。我们引入了控制前进信息的门单元,以过滤掉歧义。
  


AutoEncoder By Forest

- 
- EncoderForest(eForest),这是第一个基于树集成的自编码器。   
- 周志华和他的学生冯霁    

  提出了一种基于树的方法gcForest——“multi-Grained Cascade forest”,多粒度级联森林——通过一种全新的决策树集成方法,使用级联结构,让gcForest做表征学习。让森林能够利用树的决策路径所定义的等效类来进行后向重建,并在监督和无监督环境中展示了其使用情况。
  编码对于森林来说很容易,因为单是叶节点信息就可以被视为一种编码方式,而节点的子集甚至分支路径都可能为编码提供更多信息。


Improving speech recognition by revising gated recurrent units

- 2017年9月   
- 提出新型的GRU,即M-reluGRU。通过修改门控循环单元改善语音识别
- 【意】;蒙特利尔【加】Yoshua Bengio

  新型的GRU:1)移除重置门(reset gate)。我们发现移除重置门并不会影响系统的表现,因为我们观察到在更新门(update gate)和重置门发挥的作用上存在一定的冗余。2)用ReLU替代tanh。
  这种修改后的架构可以将每 epoch 的训练时钟时间减少 30% 以上,同时提高了语音识别的精度。

  一般的 GRU 架构定义如下:
一般的 GRU 架构定义如下
  移除重置门并且使用 ReLU 激活函数替代 tanh 后,我们可以得到新的公式:我们将这个架构称为 M-reluGRU。
这里写图片描述


A new kind of pooling layer for faster and sharper convergence

- 2017年9月   
- sort-pooling  
- Sahil Singla 在Medium 上发表的

  更快更好收敛的新型池化层 sort_pool2d,表现优于最大池化层,同时解决了最大池化层无法使用来自多层激活函数信息的问题,以及反向传播只会提升最大池化的激活函数的问题。
  按照递减的顺序将pooling_size中的4个值 与4个权重 [w1,w2,w3,w4] 进行点乘再求和,而不是选择最大的那个。对于BP过程,我们需要保存4个乘积。
用这种方式,网络依然能够学习对应于 [w1,w2,w3,w4] = [1,0,0,0] 的良好的、旧的最大池化。
  后面的层可以获取更多信息。因此,在非最大激活函数可用于降低损失函数时,网络只可学习使用其他值。
  梯度流过上一层中的所有 4 个值(相比之下,最大池化层只有一个值)。实验了cifar-100、mnist、fasion-mnist、resnet、omniglot等,性能都优于max-pooling.
  


Supervised Speech Separation Based on Deep Learning: An Overview

- 2017年8月   
- 概览基于深度学习的监督语音分离
- 

  本文的结构如下:首先回顾监督语音分离的三个主要方面,即学习机器、训练目标和特征(分别在第二、三、四章进行介绍)。第五章介绍单声道分离算法,第六章介绍基于阵列的算法。第七章是总结。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值