最新论文阅读(10)

Detecting Faces Using Region-based Fully Convolutional Networks

- 2017年9月
- Face R-FCN;人脸检测
- 腾讯AI Lab

  Face R-FCN主要是基于R-FCN(基于区域的全卷积网络)框架来解决人脸检测问题。在R-FCN框架的基础上,他们采用ResNet(残差网络)作为基础网络,结合了多尺度训练和测试、Online Hard Example Mining等改进,并针对人脸特性设计了位置敏感平均池化(position-sensitive average pooling)的方法(就是对不同pooling的区域给予不同的可训练权重),提升了检测准确率。
  Face R-FCN两种最流行和最具挑战性的人脸检测基准,FDDB和WIDER FACE均是第一。


Deepfake

- 
- GAN,编码解码器,APP
-       

  《深度解密换脸应用 Deepfake》就是前一阵很火的换脸 App,从技术的角度而言,这是深度图像生成模型的一次非常成功的应用.
  github地址:https://github.com/shaoanlu/faceswap-GANDeepfake


Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

- 2018年2月
- Tiny SSD
- 滑铁卢大学

  基于SqueezeNet提出了一个非均匀的火灾模块。
  由两个子网络组成:1) Fire sub-network stack;2)高度优化的基于SSD的辅助卷积特征层的子网络。
先1后2,1作为骨干,直接影响对象检测的性能;第二个子网络用于平衡性能、模型大小以及推理速度。
三个关键的设计策略是:1)尽可能减少3×3卷积的数量;2)尽可能减少3×3卷积的输入通道数;3)在网络的后面部分再执行pool。
  比Tiny YOLO和SqueezeDet还好。该网络在VOC2007数据集中达到61.3%的mAP,模型大小为2.3MB。


Spherical CNNs

- 
- 球形卷积神经网络
- ICRL2018的最佳论文之一

  CNN可以很好的处理二维平面图像的问题。然而,对球面图像进行处理需求日益增加。例如,对无人机、机器人、自动驾驶汽车、分子回归问题、全球天气和气候模型的全方位视觉处理问题。将球形信号的平面投影作为卷积神经网络的输入的这种天真做法是注定要失败的,这种投影引起的空间扭曲会导致CNN无法共享权重。
  这篇论文中介绍了如何构建球形CNN的模块,提出了利用广义傅里叶变换(FFT)进行快速群卷积(互相关)的操作。通过傅里叶变换来实现球形CNN。


Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

- 2017年10月  
- Person Re-identification
- face++

  提出了一种新的度量学习方法 Margin sample mining loss - MSML。
Triplet loss 是一种非常常用的度量学习方法,Quadruplet loss 和 Triplet hard batch loss(TriHard loss)是它的两个改进版本,而 MSML 是吸收了 Quadruplet loss 和 TriHard loss 两个优点的综合体,实验证明 MSML 能够在 person ReID 的公开数据集上取得很好的结果;
  这个方法不止可以应用于 person ReID,而是一种通用的度量学习方法,进一步可以延伸到图像检索等相关的各个领域。


Cross-stitch Networks for Multi-task Learning

- 
- 多任务学习
- CMU   

  对于应用深度学习进行多任务学习时会遇到一个棘手的问题,那就是我们该如何确定网络的共享部分。针对不同的任务,其最佳共享层往往不同。因此,本文针对这一问题设计了“十字绣”单元,通过端对端的学习来自动决定共享层。“十字绣”单元就是一个系数矩阵。
  虽然本文作者提到他们的方法相对于传统方法不需要去依次尝试如何选取所要共享的特征层,但是增加的“十字绣”单元同样带来了很多麻烦的东西,例如,如何进行初始化,如何设置学习速率。最终的实验结果表明,使用该方法对多任务学习的性能有一定的提升。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值