容斥原理 —— 求1~n有多少个数与k互质(二进制算法详细解释&模板)

本文介绍了如何运用容斥原理和二进制算法来解决求1到n中与k互质的数的数量问题。通过分解k的质因数并考虑质因数的奇偶性,构建出计算公式,并提供了使用二进制表示法来简化问题的思路。文章附带模板代码,帮助理解算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里有一道经典的例题,可以看一下:点击打开链接

这里的n可能要大于k的,所以不能用欧拉函数去做。

我们首先把k分解质因数,储存到p数组中,num表示质因子的数量。

void pr(int k)		//求k的质因子
{
	num = 0;
	for (int i = 2 ; i * i <= k ; i++)
	{
		if (k % i == 0)
		{
			p[num++] = i;
			while (k % i == 0)
				k /= i;
		}
	}
	if (k > 1)
		p[num++] = k;
}


然后用容斥原理,我们反着求不与k互质的数的个数,到时候一减就得出结果了。

举个例子,比如 k 的质因子有 2,3,5。那么2、3、5的倍数都不和 k 互质,另外还没有完,可能有重复的地方&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值