一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2 输出: 3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向右 -> 向下 2. 向右 -> 向下 -> 向右 3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3 输出: 28
0 | 1 | 2 | 3 | 4 | |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 2 | 3 | 4 | |
2 | 1 | 3 | 6 | 10 | |
3 | 1 | ||||
4 | 1 | ||||
5 | 1 |
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[n][m];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(i==0||j==0){
dp[i][j] = 1;
}
else{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[n - 1][m - 1];
}
};