问题描述:输入正整数n,找到所有的正整数x>=y,使得1/k=1/x+1/y。
样例输入:
2
12
样例输出:
2
1/2=1/6+1/3
1/2=1/4+1/4
8
1/12=1/156+1/13
1/12=1/84+1/14
1/12=1/60+1/15
1/12=1/48+1/16
1/12=1/36+1/18
1/12=1/30+1/20
1/12=1/28+1/21
1/12=1/24+1/24
分析:表面上枚举的范围无法确定,但由于x>=y,有1/x<=1/y,因此1/k-1/y<=1/y,即y<=2k。这样只要在2k范围之内枚举y,然后根据y尝试计算出x即可。
下面贴上实现代码(实现多组样例连续输入):
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
int k;
int x,y;
int main()
{
while(scanf("%d",&k)==1)
{
int cnt=0;
for(int y=k+1;y<=2*k;y++)
{
if(k*y%(y-k)==0)
{
cnt++;
}
}
printf("%d\n",cnt);
for(int y=k+1;y<=2*k;y++)
{
if(k*y%(y-k)==0)
{
int x=k*y/(y-k);
printf("1/%d=1/%d+1/%d\n",k,x,y);
}
}
}
}
另一种解法,与上类似:
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
int k;
int x,y;
int main()
{
while(scanf("%d",&k)==1)
{
int cnt=0;
int *a=new int[2*k];
int *b=new int[2*k];
int *c=new int[2*k];
for(int y=k+1;y<=2*k;y++)
{
if(k*y%(y-k)==0)
{
int x=k*y/(y-k);
cnt++;
a[cnt-1]=k;
b[cnt-1]=x;
c[cnt-1]=y;
}
}
printf("%d\n",cnt);
for(int i=0;i<cnt;i++)
{
printf("1/%d=1/%d+1/%d\n",a[i],b[i],c[i]);
}
}
}