吴恩达《机器学习》第八章:逻辑回归

八、神经网络:表述

8.1 非线性假设

       ~~~~~~       对于特征数很多的逻辑回归,其特征空间会膨胀,因为hθ(x)中会含有很多多次项,比如x12,x1x2,…;
在这里插入图片描述
如果包含二次项的话,那么估计一共会有O(n2)项,考虑三次项则会有O(n3)项;
在这里插入图片描述
这是一种包含很多个特征的复杂的非线性假设问题;

Q:为什么提出神经网络?
       ~~~~~~       只是包括平方项或者立方项特征,简单的logistic回归算法并不能在n很大时学习复杂的非线性假设,因此引入神经网络,它在学习复杂的非线性假设上被证明是一种好的多的算法,即使输入的特征有很多个;

8.2 神经元和大脑

       ~~~~~~       大脑是个神奇的东西,把任何传感器移入大脑,大脑的自学习算法就能学会如何使用它,找出数据的方法,并学会处理它;
在这里插入图片描述
在这里插入图片描述
神经元模型:逻辑回归单元
在这里插入图片描述
神经网络:多个神经元连接在一起的集合;
在这里插入图片描述
·
前向传播 Forward propagation
在这里插入图片描述

在这里插入图片描述
其它神经网络架构
在这里插入图片描述
但都是后一层将前一层的输出当作输入进行处理,然后传给下一层;中间的隐藏层因为既有输入也有输出,所以它并不是单一的输入输出层;
上面都太抽象了,很懵;

8.3 神经网络举例

异或取反操作:
在这里插入图片描述
XOR表示异或操作;XNOR 和 NOT (x1XORx2)表示同或(异或取反),二者相同时才为真;
在这里插入图片描述
或操作:
在这里插入图片描述
至于权重(系数)怎么来的,这就是神经网络要解决的问题了,它通过调整权重来实现这些运算,好像是后面要学的反向传播;
取反操作:
在这里插入图片描述
用神经网络来将 三者转换成同或:
在这里插入图片描述

8.4 多元分类问题

一个输入,多个输出:
在这里插入图片描述
就是独热编码 one hot;
独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。

例如:

自然状态码为:000,001,010,011,100,101

独热编码为:000001,000010,000100,001000,010000,100000

可以这样理解,对于每一个特征,如果它有m个可能值,那么经过独热编码后,就变成了m个二元特征(如成绩这个特征有好,中,差变成one-hot就是100, 010, 001)。并且,这些特征互斥,每次只有一个激活。因此,数据会变成稀疏的。

这样做的好处主要有:

  • 解决了分类器不好处理属性数据的问题,将类别变量转换成新增的虚拟变量/指示变量;
  • 在一定程度上也起到了扩充特征的作用;
    缺点就是:
  • 特征量将会变得很多,数据经过独热编码可能会变得过于稀疏;

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值